механічныя генератары гукавых (або ультрагукавых) ваганняў, крыніцай энергіі якіх з’яўляецца высокаскарасны газавы струмень. Адрозніваюць свісткі (напр., Гальтана свісток), генератары (Гартмана генератар) і сірэны. Выкарыстоўваюцца ў кантрольна-вымяральнай і сігналізавальнай апаратуры, для распылення вадкасцей, атрымання або асаджэння аэразоляў, у розных тэхнал. устаноўках для інтэнсіфікацыі цепла- і масаабмену і інш.
Гальтана свісток мае сапло з вузкай кальцавой шчылінай, перад якой размешчаны пустацелы цыліндрычны рэзанатар з вострымі клінападобнымі краямі. Газ, што выходзіць пад невял. ціскам, накіроўваецца на востры край рэзанатара і ўзбуджае ў ім перыядычныя віхры. У Гартмана генератары з сапла выцякае звышгукавы газавы струмень. Рэзанатар размешчаны сувосна з саплом у зоне няўстойлівасці газавага струменя. Частата выпрамененага гуку залежыць ад памераў рэзанатара і адлегласці паміж ім і саплом. Прынцып дзеяння сірэн заснаваны на мех. перыядычным перарыванні газавага (або вадкаснага) струменя з дапамогай заслонкі, цыліндра або дыска з адтулінамі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕСВЯТА́ЙЛАЎ (Генадзь Аляксандравіч) (4.3.1939, г. Таганрог, Расія — 30.6.1999),
бел. сацыёлаг; заснавальнік бел. школы навуказнаўства. Д-р сацыялагічных н. (1991), канд.тэхн.н. (1970). Скончыў Мікалаеўскі караблебуд. ін-т (1962). З 1966 у Ін-це цепла- і масаабмену, Ін-це эканомікі, з 1990 у Ін-це сацыялогіі (заг. аддзела) Нац.АН Беларусі. Навук. працы па праблемах сацыялогіі навукі і адукацыі, трансфармацыі акад. навукі, інтэлектуальнай міграцыі. Распрацаваў комплексную праграму даследаванняў па сац. праблемах навук.-тэхн. палітыкі, каардынатар шэрагу міжнар. даследчых праектаў.
Тв.:
Наука и ее эффективность. Мн., 1979;
Интенсификация академической науки (в условиях союзных республик). Мн., 1986;
Научный потенциал республики. Мн., 1991 (у сааўт.);
Brain Drain in Belarus (разам з М.І.Арцюхіным) // Science Studies. 1995. № 1;
Научно-технические кадры: мобильность в условиях конверсии. Мн., 1998 (у сааўт.);
Compromised futures: the consequences of an aging research staff. East European Academies in Transition. Dordrecht etc., 1998.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БУДАЎНІ́ЧЫЯ РАСТВО́РЫ.
Выкарыстоўваюць для каменнай муроўкі, мантажу зборных бетонных і жалезабетонных канструкцый, аховы метал. канструкцый і закладных дэталяў ад карозіі, для гідра-, цепла- і гукаізаляцыі будынкаў і збудаванняў. Атрымліваюць з сумесі вяжучага рэчыва (з вадой, часам без яе), дробнага запаўняльніку і дабавак (пры неабходнасці). Яны здольныя зацвердзяваць, склейваць каменныя матэрыялы і ўтвараць ахоўныя слаі буд. канструкцый.
Адрозніваюць будаўнічыя растворы: муравальныя, аддзелачныя (тынкавальныя, дэкаратыўныя) і спецыяльныя (ін’екцыйныя, тампанажныя, гарача- і кіслотаўстойлівыя, рэнтгенаахоўныя, акустычныя); цяжкія (шчыльнасць больш за 1500 кг/м³) і лёгкія (менш за 1500 кг/м³); цэментныя, вапнавыя, гіпсавыя і мяшаныя (цэментна-гліняныя, цэментна-вапнавыя, вапнава-гіпсавыя, палімерцэментныя, цэментна-перхлорвінілавыя). Будаўнічыя растворы рыхтуюць звычайна на аўтаматызаваных растворных з-дах і вузлах, дастаўляюць на буд. аб’екты ў спец. аўтацыстэрнах або аўтамабілях-самазвалах. Для зімовай муроўкі і тынкоўкі ў сумесь уводзяць процімарозныя дабаўкі, для павышэння тэхнал. якасцей і тэхн. характарыстык — пластыфікавальныя і паветраўцягвальныя дабаўкі. У дэкар. Будаўнічыя растворы дабаўляюць святло-, шчолача- і кіслотаўстойлівыя пігменты, спец. запаўняльнікі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАРЭ́ННЕ,
фізіка-хімічны працэс пераўтварэння рэчыва, які суправаджаецца інтэнсіўным вылучэннем энергіі, цепла- і масаабменам з навакольным асяроддзем і звычайна яркім свячэннем (полымем). Гарэнне ў адрозненне ад выбуху і дэтанацыі адбываецца з меншай скорасцю і без утварэння ўдарнай хвалі.
Аснова гарэння — экзатэрмічныя хім. рэакцыі, здольныя да самапаскарэння з-за назапашвання вылучанай цеплыні (цеплавое гарэнне) ці актыўных прамежкавых прадуктаў рэакцыі (ланцуговае гарэнне). Найб. шырокі клас рэакцый гарэння — акісленне вуглевадародаў (напр., пры гарэнні прыроднага паліва), вадароду, металаў і інш. Акісляльнікі — кісларод, галагены, нітразлучэнні, перхлараты. Асн. асаблівасць гарэння — здольнасць распаўсюджвання ў прасторы з-за нагрэву ці дыфузіі актыўных цэнтраў. Гарэнне можа пачацца самаадвольна (самазагаранне) ці ў выніку запальвання (полымем, эл. іскрай). Паводле агрэгатнага стану гаручага рэчыва і акісляльніку адрозніваюць гамагеннае (гарэнне газаў і газападобных рэчываў у асяроддзі газападобнага акісляльніку), гетэрагеннае (гарэнне вадкага ці цвёрдага паліва ў газападобным акісляльніку) і гарэнне выбуховых рэчываў і порахаў. Выкарыстоўваюць для вылучэння энергіі паліва ў тэхніцы (маторабудаванне, ракетная тэхніка) і цеплаэнергетыцы, атрымання мэтавых прадуктаў у тэхнал. працэсах (доменны працэс, металатэрмія і інш.).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕСЦЯРЭ́НКА (Васіль Барысавіч) (н. 2.12.1934, г.п. Красны Кут Луганскай вобл., Украіна),
бел. вучоны ў галіне ядз. энергетыкі і радыяцыйнай бяспекі. Чл.-кар.Нац.АН (1972), д-ртэхн.н. (1968), праф. (1969). Засл. дз. нав. і тэхн. Беларусі (1978). Скончыў Маскоўскае вышэйшае тэхн. вучылішча імя Баўмана (1958). З 1963 заг. лабараторыі Ін-та цепла- і масаабмену, у 1965—90 у Ін-це ядз. энергетыкі АН Беларусі (з 1965 нам. дырэктара, з 1977 дырэктар, з 1987 заг. лабараторыі), адначасова ў 1971—87 гал. канструктар перасовачных АЭС. З 1990 дырэктар Ін-та радыяцыйнай бяспекі «Белрад». Навук. працы па вывучэнні цеплаабмену і газадынамікі ў ядз. рэактарах з дысацыіруючым цепланосьбітам, даследаванні новых хімічна рэагавальных цепланосьбітаў, вызначэнні тэхніка-эканам. характарыстык АЭС з рэактарамі на хуткіх нейтронах. Дзярж. прэмія Беларусі 1986.
Тв.:
Физико-технические основы применения диссоциирующих газов как теплоносителей и рабочих тел атомных электростанций. Мн., 1971;
Теплообмен в ядерных реакторах с диссоциирующим теплоносителем. Мн., 1980 (разам з Б.Я.Твяркоўкіным);
Масштабы и последствия катастрофы на Чернобыльской АЭС для Беларуси, Украины и России. Мн.. 1996;
Чернобыльская катастрофа: радиационная защита населения. Мн., 1997.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕЛІЯКАНЦЭНТРА́ТАР (ад гелія... + канцэнтратар),
прыстасаванне для канцэнтрацыі сонечных прамянёў на невял. участку паверхні. Павышае шчыльнасць сонечнай радыяцыі ў 102—104 разоў, у месцы факусіроўкі дазваляе дасягнуць т-ры 3000 °C і болей, што дае магчымасць ажыццяўляць высокатэмпературныя тэхнал. працэсы. Выкарыстоўваецца ў геліяўстаноўках.
Складаецца з люстэркаў, увагнутых лінзаў і нясучых канструкцый. Распрацаваны тэхналогіі стварэння паўцвёрдых і надзіманых геліяканцэнтратараў з палімерных празрыстых і металізаваных плёнак. Канфігурацыі факусіруючых сістэм: парабалічныя (у т. л. з другасным адбівальнікам) і парабалацыліндрычныя канцэнтратары, лінзы Фрэнеля. Паверхні люстэркаў геліяканцэнтратара — звычайна фацэтныя перарывістыя і гладкія. Распрацоўка і стварэнне геліяканкэнтратара вядуцца ў Францыі (у 1968 уведзена сонечная печ з геліяканцэнтратарам парабалоіднага тыпу дыяметрам 54 м), Японіі, ЗША, Аўстраліі і інш. Пабудаваны шэраг сонечных энергетычных установак. У 1988 у Крыме пабудавана паратурбінная сонечная электрастанцыя магутнасцю 5 МВт. На Беларусі работы па распрацоўцы сістэм пераўтварэння канцэнтраванай сонечнай энергіі з выкарыстаннем цеплавых труб вядуцца ў акад.навук. комплексе «Ін-тцепла- і масаабмену імя А.В.Лыкава». Гл. таксама Геліятэхніка.
Літ.:
Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;
Мак-Вейг Д. Применение солнечной энергии: Пер. с англ. М., 1981. У.Л.Драгун, С.У.Конеў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЯ́ЖУЧЫЯ РЭ́ЧЫВЫ ў будаўніцтве, рэчывы, якія пераходзяць з вадкага або цестападобнага стану ў каменепадобны і звязваюць пры гэтым змешаныя з імі запаўняльнікі ці змацоўваюць камяні. Бываюць неарганічныя (мінеральныя) і арганічныя. Выкарыстоўваюцца для вырабу бетону і будаўнічых раствораў, гідра-, цепла- і гукаізаляцыйных матэрыялаў і вырабаў, канструкцыйных і дэкар. пластыкаў і інш.
Неарганічныя вяжучыя рэчывы — парашкападобныя рэчывы, здольныя пры змешванні з вадой утвараць пластычную кансістэнцыю і цвярдзець. Бываюць: гідраўлічныя, якія пасля змешвання з вадой цвярдзеюць і захоўваюць трываласць на паветры і ў вадзе (партландцэмент і яго разнавіднасці, пуцаланавыя, шлакавыя і гліназёмістыя цэменты, гідраўл.вапна і інш.); паветраныя, якія цвярдзеюць і захоўваюць трываласць толькі на паветры (гіпсавыя і магнезіяльныя рэчывы, паветр. вапна і інш.); аўтаклаўнага цвярдзення, якія эфектыўна цвярдзеюць толькі пад ціскам у аўтаклавах (вапнава-крэменязёмістыя і вапнава-нефелінавыя вяжучыя, пясчаністы партландцэмент і інш.). Арганічныя вяжучыя рэчывы — цвёрдыя або вязкавадкія прыродныя ці штучныя высокамалекулярныя злучэнні, здольныя пад уплывам фіз.-хім. працэсаў пераходзіць у цвёрды або малапластычны стан. Падзяляюцца на бітумныя (гл.Асфальт, Бітумы), дзёгцевыя і палімерныя (гл.Палімеры). У састаў вяжучых рэчываў уводзяць дабаўкі, якія паляпшаюць іх якасць або надаюць новыя ўласцівасці. На Беларусі ёсць значныя паклады сыравіны для атрымання вяжучых рэчываў (гл.Будаўнічых матэрыялаў прамысловасць).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЛЮМІ́НІЕВЫЯ СПЛА́ВЫ,
сплавы на аснове алюмінію з дабаўкамі іншых элементаў (медзі, магнію, цынку, крэмнію, марганцу, літыю, кадмію, цырконію, хрому). Адметныя малой шчыльнасцю (да 3·103кг/м³), высокімі мех. ўласцівасцямі, каразійнай устойлівасцю, высокай цепла- і электраправоднасцю, трываласцю і пластычнасцю пры нізкіх т-рах. Лёгка апрацоўваюцца рэзаннем і зварваюцца кантактнай зваркай (некаторыя плаўленнем), на вырабы з іх лёгка наносяцца ахоўныя і дэкар. пакрыцці.
Разнастайнасць уласцівасцяў алюмініевых сплаваў звязана з увядзеннем пэўных прысадак, якія ўтвараюць з алюмініем цвёрдыя растворы і інтэрметаліды і з’яўляюцца ўмацавальнай фазай сплаваў. Найб. пашыраны сплавы Al—Cu—Mg (дзюралюміны), Al—Mg (магналіі), Al—Si (сілуміны), Al—Mg—Si (авіялі), высокатрывалыя Al—Zn—Mg—Cu, крыягенныя і гарачатрывалыя Al—Cu—Mn, сплавы з нізкай шчыльнасцю Al—Mg—Li, Al—Cu—Li, Al—Cu—Mg—Li, парашковыя і грануляваныя. Алюмініевыя сплавы падзяляюцца на дэфармавальныя, ліцейныя і спечаныя. З дэфармавальных пракатваннем, прасаваннем, коўкай ці штампоўкай, валачэннем атрымліваюць пліты, лісты, профілі, пруткі, накоўкі, дрот. З ліцейных алюмініевых сплаваў вырабляюць фасонныя адліўкі метадамі ліцця ў земляныя, коркавыя ці метал. кокільныя) формы, а таксама ліцця пад ціскам. Спечаныя алюмініевыя сплавы атрымліваюць метадамі парашковай металургіі. Алюмініевыя сплавы выкарыстоўваюць у авіяц. прам-сці, судна- і прыладабудаванні, аўтамаб., электратэхн. вытв-сці, буд-ве, у вытв-сці быт. вырабаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕЛІЯЎСТАНО́ЎКА,
прыстасаванне для пераўтварэння энергіі сонечнай радыяцыі ў іншыя віды энергіі з мэтай іх практычнага выкарыстання. Бываюць з геліяканцэнтратарамі і без іх.
Геліяўстаноўкі з канцэнтратарамі забяспечваюць значнае павышэнне шчыльнасці сонечнай радыяцыі, выкарыстоўваюцца для ажыццяўлення высокатэмпературных (да 3000—3500 °C пры ккдз 0,4—0,6) тэхнал. працэсаў (сонечныя печы для плаўкі металаў і тэрмаапрацоўкі вогнетрывалых матэрыялаў, сонечныя энергетычныя ўстаноўкі). Геліяўстаноўкі без канцэнтратараў непасрэдна ўлоўліваюць сонечныя прамяні — працуюць па прынцыпе «гарачай скрыні», маюць больш шырокі спектр выкарыстання (сонечныя батарэі, сонечныя воданагравальнікі, апрасняльнікі вады, сушылкі, кандыцыянеры, халадзільнікі і інш.). У геліяэнергетыцы для атрымання пары прамысл. параметраў выкарыстоўваюцца прыблізна парабалічныя геліяўстаноўкі (гл.Сонечная электрастанцыя). Перспектыўныя геліяўстаноўкі з сонечнымі цеплаакумулятарамі (ЦА). У ЦА лішак цеплавой энергіі, створаны за кошт прытоку сонечнага цяпла ў дзённы час, забіраецца цеплаакумулюючым матэрыялам, захоўваецца (да 10 сут) і паступова выкарыстоўваецца для тэхнал. або быт. патрэб.
На Беларусі даследаванні і распрацоўкі геліяўстановак і іх элементнай базы вядуцца ў Акад.навук. комплексе «Ін-тцепла- і масаабмену імя А.В.Лыкава» (АНК ІЦМА), Ін-це фізікі цвёрдага цела паўправаднікоў Нац.АН Беларусі, Бел.політэхн. акадэміі, Цэнтр.НДІ механізацыі і электрыфікацыі сельскай гаспадаркі і інш. У АНК ІЦМА распрацаваны 2 тыпы ЦА, якія назапашваюць сонечную цеплавую энергію, што паступае праз сцены, вокны і ад геліякалектараў (тэмпературны дыяпазон ЦА 10—150 °C).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАЛАКО́ННАЯ О́ПТЫКА,
раздзел оптаэлектронікі, які вывучае распаўсюджванне святла і перадачу інфармацыі па валаконных святлаводах і займаецца распрацоўкай апаратуры. Вылучылася ў самаст. кірунак у 1950-я г. ў сувязі з развіццём выліч. тэхнікі, кабельнага тэлебачання, сістэм аптычнай сувязі, мед. тэхнікі (зонды), стварэннем квантавых узмацняльнікаў, лазераў і інш.
Па святлаводах светлавыя сігналы перадаюцца з адной паверхні (тарца святлавода) на другую (выхадную) як сукупнасць элементаў відарыса, кожны з якіх перадаецца па сваёй святловядучай жыле. Стрыжань святлавода мае паказчык пераламлення святла, большы за абалонку, таму на мяжы стрыжня і абалонкі адбываецца шматразовае поўнае ўнутранае адбіццё святла, якое распаўсюджваецца па святлаводзе з малымі стратамі. Калі дыяметр святлавода большы за даўжыню хвалі (мнатамодавыя святлаводы), распаўсюджванне святла падпарадкоўваецца законам геаметрычнай оптыкі, у больш тонкіх валокнах (парадку даўжыні хвалі; аднамодавыя святлаводы) — законам хвалевай оптыкі. Святлаводы бываюць жорсткія (аднажыльныя, шматжыльныя) і ў выглядзе жгутоў з рэгулярнай укладкай валокнаў. Якасць відарыса вызначаецца дыяметрам жыл, іх колькасцю, дасканаласцю вырабу. Гал. прычына страт энергіі ў святлаводах — паглынанне святла шклом жылы.
На Беларусі даследаванні па валаконнай оптыцы, пачаліся ў 1974 у Ін-це прыкладной оптыкі АН Беларусі (г. Магілёў), вядуцца ў Аддзеле аптычных праблем інфарматыкі АН Беларусі, Бел.дзярж. ун-це інфарматыкі і радыёэлектронікі, Акадэмічным навук. комплексе «Ін-тцепла- і масаабмену імя А.В.Лыкава» і інш.
Літ.:
Волоконная оптика. М., 1993;
Тидекен Р. Волоконная оптика и ее применение. Пер. с англ. М., 1975.