прагрэ́сія
(лац. progressio = рух наперад)
рад лікаў, якія паслядоўна павялічваюцца або памяншаюцца так, што розніца або адносіны паміж суседнімі лікамі з’яўляюцца велічынёй пастаяннай (напр. арыфметычная п., геаметрычная п.).
Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г., часткова)
АСАЦЫЯТЫ́ЎНАСЦЬ
(ад лац. associare далучаць),
спалучальнасць, спалучальны закон (матэм.), уласцівасць складання і множання лікаў, якая выражана тоеснасцю (a + b) + c = a + (b + c) і (a b) c = a (bc) адпаведна (спачатку выконваецца аперацыя, узятая ў дужкі). Уласцівасць асацыятыўнасці мае множанне матрыц, падстановак, пераўтварэнняў. Аперацыі дзялення і аднімання не асацыятыўныя.
т. 2, с. 21
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
су́ма, ‑ы, ж.
1. Лік, які атрымліваецца ў выніку складання дзвюх або некалькіх велічынь. Сума двух лікаў.
2. Агульная колькасць, сукупнасць чаго‑н. Багдановіч класічна выкарыстоўваў і першы і другі сродак [метафару і эпітэт], абапіраючыся на суму сродкаў, а не на паасобныя з іх. Лойка. У суме дзесяці відаў праграмы юнак устанавіў новы рэкорд рэспублікі. Шыцік.
3. Пэўная колькасць грошай. [Вера Паўлаўна:] А большую суму на будаўніцтва вы не маглі вылучыць? Крапіва.
•••
Круглая (кругленькая) сума — пра вялікія грошы.
[Лац. summa.]
Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)
ВІНАГРА́ДАЎ Іван Мацвеевіч
(14.9.1891, с. Мілалюб Пскоўскай вобл., Расія — 20.3.1983),
савецкі матэматык.
Акад. АН СССР (1929). Чл. шматлікіх замежных АН. Двойчы Герой Сац. Працы (1945, 1971). Скончыў Пецярбургскі ун-т (1914). З 1918 у Пермскім ун-це, ленінградскіх політэхн. ін-це і ун-це. З 1932 дырэктар Матэм. ін-та АН СССР. Навук. працы па аналіт. тэорыі лікаў. Прапанаваў адзін з самых эфектыўных і агульных метадаў аналіт. тэорыі лікаў — метад трыганаметрычных сум, які дазволіў атрымаць фундаментальныя вынікі па праблемах Варынга, Гільберта—Камке, Гольдбаха, ацэнцы сум Вейля і інш. Ленінская прэмія 1972. Дзярж. прэмія СССР 1941, 1983. Залаты медаль імя М.В.Ламаносава АН СССР (1971).
Тв.:
Метод тригонометрических сумм в теории чисел. 2 изд. М., 1980;
Основы теории чисел. 9 изд. М., 1981.
Літ.:
Н.М.Виноградов. М., 1978.
т. 4, с. 181
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРЫЯБХА́ТА
(476, Кусумапур, паблізу сучаснага горада Пата, Індыя — каля 550),
індыйскі астраном і матэматык. У творы «Арыябхатыям» выклаў некаторыя матэматычныя звесткі, неабходныя для астранамічных вылічэнняў: здабыванне квадратнага і кубічнага каранёў, найпрасцейшыя задачы на складанне і рашэнне ўраўненняў, правілы падсумавання радоў, табліцу сінусаў, прыбліжанае значэнне ліку π = 3,1416 і інш. Увёў запіс лікаў пры дапамозе літар санскрыту.
Літ.:
Володарский А.И. Ариабхата. М., 1977.
т. 2, с. 9
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРЫФМЕТЫ́ЧНАЯ ПРАГРЭ́СІЯ,
паслядоўнасць лікаў (a1, a2, ..., an, ...), кожны наступны з якіх атрымліваецца з папярэдняга дадаваннем пастаяннага ліку d (рознасць арыфметычнай прагрэсіі). Напрыклад, 2, 5, 8, 11, ..., d = 3. Калі d>0 (d<0), то арыфметычная прагрэсія нарастальная (спадальная). Любы член арыфметычнай прагрэсіі вылічваецца па формуле
; сума Sn першых n членаў —
.
т. 2, с. 9
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ЛГЕБРЫ АСНО́ЎНАЯ ТЭАРЭ́МА,
класічная тэарэма існавання, якая сцвярджае, што кожны мнагасклад з камплекснымі каэфіцыентамі мае камплексны корань. Упершыню выказаў ням. матэматык П.Ротэ (1608), першым дакладна даказаў К.Гаўс (1799). Усе доказы абапіраюцца на тапалагічныя ўласцівасці мностваў камплексных і рэчаісных лікаў. З алгебры асноўнай тэарэмы вынікае: колькасць каранёў мнагаскладу супадае са ступенню мнагаскладу; кожны паліном з рэчаіснымі каэфіцыентамі раскладаецца ў здабытак лінейных і квадратычных множнікаў з рэчаіснымі каэфіцыентамі.
В.А.Ліпніцкі.
т. 1, с. 235
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЮІ́,
Аюі (Haüy) Рэнэ Жуст (28.2.1743, г. Сен-Жу-ан-Шасэ, Францыя — 1.6 або 3.6.1822), французскі крышталёграф і мінералог. Чл. Парыжскай АН (1783). Ганаровы чл. Пецярбургскай АН (1806). У 1794—1802 праф. Горнай школы (Парыж). Зрабіў вял. ўклад у развіццё крышталяграфіі; адкрыў закон цэлых лікаў (рацыянальнасці параметраў), названы яго імем, распрацаваў тэорыю памяншэння колькасці малекул у слаях, якія паслядоўна фарміруюць крышталь. Яго імем названы мінерал гаюін.
т. 5, с. 97
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРЫФМЕ́ТЫКА
(ад грэчаскага arithmos лік),
навука, галоўны аб’ект якой цэлыя, рацыянальныя лікі і дзеянні над імі. Узнікла ў старажытныя часы з практычных патрэб чалавека лічыць і вымяраць. Для падліку вялікай колькасці аб’ектаў створаны сістэмы лічэння. Найбольш зручная дзесятковая сістэма лічэння; існуюць таксама сістэмы лічэння з асновамі 5, 12, 20, 40, 60 і нават 11 (Новая Зеландыя). З пашырэннем вылічальнай тэхнікі выкарыстоўваецца двайковая сістэма лічэння.
Да пачатку нашай эры былі атрыманы дастаткова глыбокія вынікі: даказана бесканечнасць мноства простых лікаў, несувымернасць стараны квадрата і яго дыяганалі (па сутнасці доказ ірацыянальнасці ліку √2), створаны алгарытм выяўлення агульнай меры двух адрэзкаў і найбольшага агульнага дзельніка, Піфагорам знойдзены агульны выгляд цэлалікавых катэтаў і гіпатэнузы прамавугольных трохвугольнікаў, значны ўплыў на развіццё арыфметыкі зрабіў Архімед. Фундаментальнае значэнне арыфметыкі як навукі стала зразумелым у канцы 17 стагоддзя ў сувязі з далучэннем да яе паняцця ірацыянальнага ліку. Развіццё апарату сувязяў паміж гэтымі лікамі і іх рацыянальнымі набліжэннямі (у прыватнасці, дзесятковымі), а таксама вынаходства і дастасаванне лагарыфмаў (шатландскі матэматык Дж.Непер) значна пашырылі тэматыку даследаванняў. Шматлікія пытанні знайшлі вырашэнне ў лікаў тэорыі. Спроба Г.Грасмана аксіяматычнай пабудовы арыфметыкі (сярэдзіна 19 стагоддзя) завершана італьянскім матэматыкам Дж.Пеана ў выглядзе 5 аксіём: 1) адзінка ёсць натуральны лік; 2) наступны за натуральным лікам ёсць таксама натуральны лік; 3) у адзінкі няма папярэдняга натуральнага ліку; 4) калі натуральны лік a стаіць за натуральным лікам b і за натуральным лікам c, то b і c тоесныя; 5) калі якое-небудзь сцвярджэнне даказана для адзінкі і калі з дапушчэння, што яно праўдзівае для натуральнага ліку n, вынікае, што яно выконваецца і для наступнага за n натуральнага ліку, то гэта сцвярджэнне справядліва для адвольнага натуральнага ліку (аксіёма поўнай матэматычнай індукцыі). Па-за прапанаванай сістэмай аксіём застаюцца многія пытанні, у якіх вывучаецца ўся бесканечная сукупнасць натуральных лікаў, што патрабуе даследавання несупярэчлівасці адпаведнай сістэмы аксіём і больш дэталёвага аналізу сэнсу сцвярджэнняў, якія вынікаюць з яе. Як навука арыфметыка часам атаясамліваецца з тэорыяй лікаў.
Літ.:
История математики с древнейших времен до начала XIX столетия. Т. 1—3. М., 1970—72. Депман И.Я. История арифметики. 2 изд. М., 1965.
В.І.Бернік.
т. 2, с. 9
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
kolumna
ж.
1. архіт. калона;
2. друк. калонка, слупок;
kolumna liczb — слупок лікаў;
kolumna gazety — газетная калонка;
3. вайск. калона;
kolumna samochodowa — аўтамабільная калона (аўтакалона)
Польска-беларускі слоўнік (Я. Волкава, В. Авілава, 2004, правапіс да 2008 г.)