БЕРАЗО́ЎСКІ Аляксандр Аляксандравіч

(н. 25.7.1937, в. Студзёнае Петрыкаўскага р-на Гомельскай вобл.),

бел. архітэктар. Засл. арх. Беларусі (1990). Скончыў БПІ (1964). З 1957 у ін-тах «Мінгарпраект», «Мінскпраект», з 1980 гал. архітэктар ін-та «Белжылпраект». Асн. работы (усе ў Мінску): навук.-мед. б-ка на вул. Фабрыцыуса (1976); у складзе аўтарскіх калектываў: будынкі ін-таў тэхн. кібернетыкі (1967) і электронікі (1968) АН Беларусі, глебазнаўства і аграхіміі Мін-ва сельскай гаспадаркі і комплекс Бел. ун-та культуры і Ін-та ўдасканалення кіруючых работнікаў (1980), навуч. комплекс Белсаўпрофа (1978), рэканструкцыя стадыёна «Дынама» (1980), кварталаў Траецкага прадмесця і Верхняга горада (1982).

т. 3, с. 106

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЗЕВЯ́ТКАЎ Мікалай Дзмітрыевіч

(н. 11.4.1907, г. Волагда, Расія),

расійскі вучоны ў галіне электронікі. Акад. Расійскай АН (1968, чл.-кар. 1953). Герой Сац. Працы (1969). Скончыў Ленінградскі політэхн. ін-т (1931). Працаваў у Маскоўскім фіз.-тэхн. ін-це, Ін-це радыётэхнікі і электронікі АН СССР, інш. НДІ, навук. ВА «Выток». Навук. працы па вывучэнні газавага разраду, стварэнні газаразрадных прылад для аховы ліній сувязі, прылад і прыстасаванняў ЗВЧ-дыяпазону, мед. электроніцы. Гал. рэдактар час. «Радиотехника и электроника». Ленінская прэмія 1965. Дзярж. прэмія СССР 1949.

Тв.:

Разрядники для защиты линий слабого тока // Электричество. 1931. № 22;

Лазеры в клинической медицине. М., 1981;

Миллиметровые волны и их роль в процессах жизнедеятельности. М., 1991 (разам з М.Б.Голантам, А.У.Бецкім).

М.Дз.Дзевяткаў.

ДЗЕВЯТНА́ЦЦАТАЯ УСЕСАЮ́ЗНАЯ КАНФЕРЭ́НЦЫЯ КПСС.

Адбылася 28.6—1.7.1988 у Маскве; 4991 дэлегат прадстаўляў 18,9 млн. членаў партыі. Парадак дня: аб ходзе рэалізацыі рашэнняў XXVII з’езда КПСС, асн. выніках 1-й пал. 12-й пяцігодкі і задачах парт. арг-цый па паглыбленні працэсу перабудовы; аб захадах па далейшай дэмакратызацыі жыцця партыі і грамадства. Канферэнцыя прыняла шэраг рэзалюцый, паводле якіх гал. мэтамі перабудовы абвешчаны змена паліт. структуры сав. грамадства і перадача ўсёй улады ад КПСС Саветам нар. дэпутатаў; прапанавана (пазней унесена ў Канстытуцыю СССР) новая (больш складаная) структура з’езда нар. дэпутатаў і Вярх. Савета СССР; парт. арг-цыі зарыентаваны на больш паслядоўнае выкараненне бюракратызму і пашырэнне галоснасці; у нац. палітыцы прызнана неабходным актывізаваць развіццё самастойнасці саюзных рэспублік і аўтаномій.

І.Ф.Раманоўскі.

т. 6, с. 100

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«ДЖЭ́НЕРАЛ ЭЛЕ́КТРЫК КО́МПАНІ»

(General Electric Company),

буйнейшая ў ЗША прамысл. карпарацыя па электроніцы. Засн. ў 1892 шляхам аб’яднання «Эдысан джэнерал электрык компані» і «Томсан-Хаўстан электрык компані». Штаб-кватэра ў г. Скенектады (штат Нью-Йорк). Кантралюецца фін. групай Моргана. Мае філіялы больш як у 50 краінах свету. Звязана з герм. (удзел у канцэрнах «Осрам» і АЭГ) і брыт. (удзел у канцэрне «Асашыэйтэд электрыкал індастрыс») прам-сцю. Прадукцыя карпарацыі ахоплівае амаль усе галіны машынабудавання, электронікі і электратэхн. прам-сці і інш.: турбіны, лакаматывы, станкі, інструменты, тэлекамунікацыйнае, электратэхн. і электрасілавое абсталяванне, ядзерныя рэактары, ракеты, мед. тэхніка, сінт. алмазы, пластмасы, фарбы, электралямпы і інш. У час 2-й сусв. вайны на з-дах «Дж.э.к.» была зроблена атамная бомба.

т. 6, с. 98

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАНЧАРЭ́НКА Андрэй Маркавіч

(н. 2.1.1933, в. Версанка Крупскага р-на Мінскай вобл.),

бел. фізік. Акад. АН Беларусі (1984, чл.-кар. 1972), д-р фізіка-матэм. н. (1972), праф. (1974). Засл. дз. нав. Беларусі (1978). Скончыў БДУ (1956). З 1959 у Ін-це фізікі, з 1970 нам. дырэктара ін-та і кіраўнік Магілёўскага аддз. Ін-та фізікі, у 1987—97 гал. вучоны сакратар Прэзідыума, адначасова з 1991 дырэктар Аддзела антычных аптычных праблем інфарматыкі АН Беларусі. Навук. працы ў галіне фіз. і інтэгральнай оптыкі, квантавай і аптычнай электронікі. Распрацаваў тэорыю дыэлектрычных хваляводаў і святлаводаў, тэорыю анізатропных рэзанатараў аптычных квантавых генератараў. Дзярж. прэмія Беларусі 1984.

Тв.:

Гауссовы пучки света. Мн., 1977;

Основы теории оптических волноводов. Мн., 1983 (разам з В.А.Карпенкам).

Літ.:

А.М. Ганчарэнка // Весці АН Беларусі. Сер. фіз.-матэм. навук 1993. № 1.

М.У.Токараў.

т. 5, с. 35

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ СПЕКТРАСКАПІ́Я,

раздзел аптычнай спектраскапіі, заснаваны на выкарыстанні ўласцівасцей лазернага выпрамянення. Выкарыстоўваецца ў фізіцы, біялогіі, хіміі, экалогіі для вывучэння структуры, стану і ўласцівасцей рэчыва, часціц і працэсаў.

Узнікла ў 1960-я г. на мяжы спектраскапіі і квантавай электронікі. Метады Л.с. выкарыстоўваюць з’явы нелінейнага ўзаемадзеяння лазернага выпрамянення з рэчывам (двух ці больш фатоннае, а таксама насычанае і наведзенае паглынанне, працэсы кагерэнтнага рассеяння, шматфатоннага змешвання і інш.). Л.с. характарызуецца высокімі адчувальнасцю, спектральнай, прасторавай і часавай раздзяляльнай здольнасцю, дазваляе вывучаць спектральныя характарыстыкі, замаскіраваныя неаднародным пашырэннем спектральных ліній ці палос, даследаваць рэчыва ва ўзбуджаным стане, праводзіць даследаванні адзінкавых атамаў і малекул.

На Беларусі даследаванні па праблемах Л.с. праводзяцца ў Ін-це фізікі, Ін-це малекулярнай і атамнай фізікі Нац. АН, БДУ, Гомельскім і Гродзенскім ун-тах і інш.

Літ.: Летохов В.С., Чеботаев В.П. Принципы нелинейной лазерной спектроскопии. М., 1975; Проблемы современной оптики и спектроскопии. Мн., 1980; Ахманов С.А., Коротеев Н.И. Методы нелинейной оптики в спектроскопии рассеяния света. М., 1981; Лазерная пикосекундная спекгроскопия и фотохимия биомолекул. М., 1987.

В.А.Арловіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ФІ́ЗІКА,

раздзел фізікі, у якім вывучаюцца працэсы генерацыі, узмацнення і распаўсюджвання лазернага выпрамянення, яго ўзаемадзеяння з рознымі асяроддзямі і аб’ектамі; фіз. асновы стварэння і выкарыстання лазераў частка квантавай электронікі.

Узнікла ў 1960-я г. на мяжы оптыкі, радыёфізікі, электронікі і матэрыялазнаўства. Атрымала хуткае развіццё з прычыны асаблівых якасцей лазернага промня: яго надзвычай высокіх кагерэнтнасці, монахраматычнасці, накіравальнасці распаўсюджвання, прасторавай і часавай шчыльнасці энергіі, вельмі малой працягласці асобных імпульсаў. Гэтыя якасці, іх спалучэнні і камбінацыі абумовілі развіццё лазернай тэхнікі — лазерных сродкаў даследавання розных асяроддзяў і аб’ектаў, выканання разнастайных лазерных тэхналогій, у т.л. тонкіх, стварэння аптычнай сувязі, апрацоўкі, запісу і счытвання інфармацыі (гл. Аптычны запіс). Выкарыстанне лазернага выпрамянення выклікала змены шэрагу паняццяў і ўяўленняў оптыкі і інш. галін ведаў. У выніку выкарыстання лазераў выяўлены і даследаваны такія нелінейна-аптычныя з’явы, як генерацыя гармонік, складанне і адыманне частот, вымушанае камбінацыйнае рассеянне, самафакусіроўка і тунэляванне лазернага пучка, чатырохфатоннае змешванне, двухфатоннае паглынанне, амплітудна-фазавая канверсія мадуляцыі, утварэнне салітонаў і інш. Нелінейна-аптычныя з’явы знайшлі шырокае выкарыстанне для кіравання характарыстыкамі лазернага выпрамянення (пры яго генерацыі і распаўсюджванні), вывучэння структуры рэчыва (гл. Лазерная спектраскапія) і дынамікі розных працэсаў у асяроддзях. У імпульсах лазернага выпрамянення фемтасекунднай (10 с) працягласці дасягнуты шчыльнасці магутнасці парадку 10​21 Вт/см2. Сілы ўздзеяння такіх імпульсаў на электроны і ядры атамаў істотна перавышаюць сілы іх узаемадзеяння ў ядрах, што дае магчымасць кіроўнага ўздзеяння на структуру атамаў і малекул. Лазерныя крыніцы выпрамянення выкарыстоўваюцца ў звычайных аптычных прыладах, што значна паляпшае іх характарыстыкі і пашырае магчымасці, і для стварэння прынцыпова новых прылад і метадаў даследавання, новых тэхн. сродкаў (аптычныя дыскі. лазерныя прынтэры, аудыё- і відэапрайгравальнікі, лініі валаконна-аптычнай сувязі, галаграфічныя і кантрольна-вымяральныя прылады). Дасягненні Л.ф. шырока выкарыстоўваюцца ў розных галінах навукі, прамысл. тэхналогіях, у ваен. тэхніцы, касманаўтыцы, медыцыне.

На Беларусі даследаванні па Л.ф. пачаліся ў 1961 у Ін-це фізікі АН пад кіраўніцтвам Б.І.Сцяпанава. Праводзяцца ў ін-тах фіз. і фізіка-тэхн. профілю Нац. АН Беларусі, установах адукацыі і прамысл. арг-цыях. Прадказана і атрымана генерацыя на растворах складаных малекул, створана серыя лазераў з плаўнай перастройкай частаты ў шырокім дыяпазоне; прапанаваны метады разліку і кіравання энергет., часавымі, частотнымі, палярызацыйнымі і вуглавымі характарыстыкамі лазераў і лазернага выпрамянення; створаны новыя тыпы лазерных крыніц святла агульнага і спец. прызначэння. Распрацаваны фіз. асновы дынамічнай галаграфіі, вывучаны заканамернасці ўзнікнення і працякання многіх нелінейна аптычных з’яў і распаўсюджвання святла ў нелінейна-аптычных асяроддзях.

Літ.:

Апанасевич П.А Основы теории взаимодействия света с веществом. Мн., 1977;

Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М., 1991;

Ярив А. Введение в оптическую электронику: Пер. с англ. М., 1983;

Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.

П.А.Апанасевіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЎТАМАТЫЗА́ЦЫЯ ВЫТВО́РЧАСЦІ,

ажыццяўленне вытв. працэсу з дапамогай аўтам. сродкаў без непасрэднага ўдзелу ў ім чалавека, а толькі пад яго кантролем. Засн. на выкарыстанні камп’ютэрных сістэм, прылад і аўтаматаў, якія дапоўнілі 3-звенную сістэму машын (рухавік, перадатачны механізм, рабочая машына) 4-м звяном — блокам аўтам. кіравання і кантролю. З’яўляецца асновай развіцця сучаснай эканомікі і гал. кірункам навукова-тэхнічнага прагрэсу. Ажыццяўляецца з мэтай павышэння эфектыўнасці вытв-сці, якасці прадукцыі і аптымальнага выкарыстання рэсурсаў. Бывае частковая (аўтаматызаваны ўчастак, цэх, прадпрыемства) і поўная (аўтаматызаваны ўсе працэсы, у тым ліку падрыхтоўка і рэгуляванне вытв-сці). Комплексныя і поўная аўтаматызацыя вытворчасці — гэта пераход да т.зв. бязлюдных тэхналогій. Неабходнасць аўтаматызацыі вытворчасці абумоўлена тэхнічна (калі пры выкананні аперацый выкарыстанне чалавечай працы на пэўным участку немагчыма), эканамічна (апраўдана толькі пры зніжэнні выдаткаў вытв-сці), сацыяльна (дыктуецца ростам прафес. гуманітарнага і культ. ўзроўню работніка, гарманічнага развіцця яго як асобы).

Аўтаматызацыя вытворчасці ажыццяўляецца ў 3 кірунках, якія адлюстроўваюць асн. этапы развіцця навукі і тэхнікі ў галіне механікі, электратэхнікі і электронікі. 1-ы кірунак ажыццяўляецца з перыяду прамысловага перавароту — вынаходства рабочых машын, здольных выконваць вытв. аперацыі без удзелу рабочага (ткацкія станкі, станкі апрацоўкі дэталяў па капіры і інш.). Дзеянне такіх машын-аўтаматаў грунтуецца на выкарыстанні дасягненняў класічнай механікі з дапамогай адпаведных канструкцыйных рашэнняў. Роля чалавека тут зводзіцца да назірання за работай машын ці да падачы матэрыялаў для іх перапрацоўкі і ўборкі гатовай прадукцыі. 2-і кірунак ажыццяўляецца з пач 20 ст. на базе выкарыстання электраэнергіі ў якасці рухальнай сілы. Вынаходства прылад, заснаваных на выкарыстанні электрычнасці і электрамагнетызму (рэле, кантактараў, прылад кантролю, рэгулявання і інш.) зрабіла магчымым звязаць у адзіную сістэму сукупнасць машын і механізмаў, якія вырашаюць пэўную тэхнал. задачу. На гэтым этапе пачаліся распрацоўка і шырокае выкарыстанне аўтам. ліній і вытв-сцяў, здольных без удзелу чалавека выконваць тэхнал. аперацыі па апрацоўцы дэталяў і нават зборку нескладаных вырабаў. Роля чалавека на такіх лініях — у падачы матэрыялаў, падборы і наладцы патрэбнага інструменту, кіраванні, кантролі, загрузцы і выгрузцы дэталяў. 3-і кірунак пачаўся з 2-й пал. 20 ст. на базе развіцця электронікі і выкарыстання ЭВМ (камп’ютэраў). Рэвалюцыйны скачок у вытв. працэсе адбыўся з выкарыстаннем аўтам. маніпулятараў (робатаў) і станкоў з лікавым праграмным кіраваннем, якія з дапамогай уманціраваных у іх камп’ютэраў здольныя самастойна запамінаць і абагульняць вопыт сваёй работы, выконваць і каардынаваць складаныя фіз. дзеянні ў прасторы. Гэта істотна мяняе характар і змест працы: аўтам. сістэма машын сама ўздзейнічае на прадмет працы, выконвае не толькі фіз., а і шэраг інтэлектуальных функцый рабочага.

Найб. пашырана аўтаматызацыя вытворчасці ў касманаўтыцы, металургіі, ядз. энергетыцы, радыёэлектроннай прам-сці, сувязі і інш. галінах эканомікі, у т. л. і нематэрыяльнай сферы. Дзейнічаюць аўтаматызаваныя прадпрыемствы, аўтаматычныя лініі, аўтаматычныя маніпулятары, аўтаматызаваныя сістэмы кіравання, класы аўтаматызаванага навучання, сістэмы па аўтаматызацыі вымярэнняў, аўтаматызацыі праграмавання, аўтаматызацыі праектавання і інш. На Беларусі наладжаны выпуск ЭВМ, аўтам. ліній і маніпулятараў, станкоў з лікавым праграмным кіраваннем і інш. сучасных сродкаў аўтаматызацыі, якія шырока выкарыстоўваюцца ў вытв-сці і пастаўляюцца на экспарт.

Літ.:

Автоматизация производственных процессов на основе промышленных роботов нового поколения: Сб. науч. тр. М., 1991.

М.С.Сачко.

т. 2, с. 114

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕР

(англ. laser, скарачэнне ад Light Amplification by Stimulated Emission of Radiation узмацненне святла вымушаным выпрамяненнем),

аптычны квантавы генератар эл.-магн. выпрамянення ў бачным, інфрачырвоным ці ультрафіялетавым дыяпазонах даўжынь хваль. Прынцып работы Л. заснаваны на ўзмацненні святла пры наяўнасці адваротнай сувязі. Выкарыстоўваецца ў навук. фіз., хім., біял. даследаваннях, прам-сці, медыцыне, экалогіі, лініях валаконна-аптычнай сувязі, для запісу, апрацоўкі, перадачы і захоўвання інфармацыі і інш., а таксама ў ваен. справе (прамянёвая зброя).

Л. мае актыўнае асяроддзе, прылады напампоўкі для ўзбуджэння рэчыва ва ўзмацняльны стан і адваротнай сувязі, якая забяспечвае шматразовае праходжанне выпрамянення праз актыўнае рэчыва. Адваротная сувязь ствараецца люстэркамі (гл. Аптычны рэзанатар) або перыядычнымі неаднастайнасцямі актыўнага рэчыва (Л. з размеркаванай адваротнай сувяззю). Паводле актыўнага рэчыва адрозніваюць газавы лазер, паўправадніковы лазер, цвердацелы лазер, вадкасны на арган. фарбавальніках, эксімерны Л. (на малекулах галагенаў з высакароднымі газамі), Л. на свабодных электронах і інш.; паводле рэжыму работы — неперарыўны і імпульсны (выпрамяняюцца адзінкавыя імпульсы ці перыядычная паслядоўнасць імпульсаў з частатой паўтарэння да 10​7 с​-1.

На Беларусі даследаванні і распрацоўкі Л. праводзяцца ў ін-тах фізікі, электронікі, малекулярнай і атамнай фізікі Нац. АН, БДУ, БПА і інш. Бел. вучонымі і інжынерамі створаны лазеры на арган. фарбавальніках, рэалізаваны розныя метады кіравання параметрамі лазернага выпрамянення і выкарыстання Л. ў навук. даследаваннях, медыцыне, апрацоўцы інфармацыі.

Літ.:

Степанов Б.И. Лазеры на красителях. М., 1979;

Яго ж. Лазеры сегодня и завтра. Мн., 1987;

Качмарек Ф. Введение в физику лазеров: Пер. с пол. М., 1981;

Тарасов Л.В. Лазеры действительности и надежды. М., 1985;

Войтович А.П., Севериков В.Н. Лазеры с анизотропными резонаторами. Мн., 1988.

П.А.Апанасевіч.

т. 9, с. 100

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ФІ́ЗІКА,

раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).

Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).

Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.

Літ.:

Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;

Хунд Ф. История квантовой физики Киев, 1980;

Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКУ́СТЫКА

(ад грэч. akustikos слыхавы),

раздзел фізікі, які вывучае пругкія ваганні і хвалі ад самых нізкіх частот (умоўна ад 0 Гц) да самых высокіх (10​12—10​13 Гц), іх узаемадзеянне з рэчывам і выкарыстанне.

Першыя звесткі аб акустыцы — у Піфагора (6 ст. да н.э.). Развіццё акустыкі звязана з імёнамі Арыстоцеля, Г.Галілея, І.Ньютана, Г.Гельмгольца. Вынікі класічнай акустыкі падагульніў Дж.Рэлей. Значны ўклад у развіццё акустыкі зрабілі М.М.Андрэеў, А.А.Харкевіч, Л.М.Брэхаўскіх, Л.І.Мандэльштам, М.А.Леантовіч і інш. Новы этап развіцця акустыкі ў 20 ст. звязаны з развіццём электра- і радыётэхнікі, электронікі.

Агульная акустыка на аснове лінейных дыферэнцыяльных ураўненняў вывучае заканамернасці адбіцця і пераламлення акустычных хваляў на паверхні, распаўсюджванне, інтэрферэнцыю і дыфракцыю іх у суцэльных асяроддзях, ваганні ў сістэмах з засяроджанымі параметрамі. Акустыка рухомых асяроддзяў і статыстычная разглядаюць уплыў руху і нерэгулярнасцяў асяроддзя на распаўсюджванне, выпрамяненне і прыём гукавых хваляў. Фізічная акустыка вывучае залежнасць характарыстык хваляў ад уласцівасцей і стану асяроддзя; яе падраздзелы: малекулярная акустыка (паглынанне і дысперсія гуку), квантавая акустыка (разглядае пругкія хвалі як фаноны, пры нізкіх т-рах, ва ультра- і гіпергукавым дыяпазонах). Псіхафізіялагічная акустыка вывучае ўздзеянне гуку на чалавека. Асн. задача электраакустыкі (магнітаакустыкі) — распрацоўка гучнагаварыцеляў, мікрафонаў, тэлефонаў і інш. выпрамяняльнікаў і прыёмнікаў гуку. Гідраакустыка і атмасферная акустыка — выкарыстанне гуку для падводнай лакацыі, сувязі, зандзіравання атмасферы і інш. Задачы архітэктурнай і будаўнічай акустыкі — паляпшэнне распаўсюджвання і ўспрымання мовы і музычных гукаў у памяшканнях, памяншэнне шуму (гл. Акустыка архітэктурная, Акустыка музычная). Нелінейная акустыка, акустаоптыка і акустаэлектроніка вывучаюць узаемадзеянне акустычных хваляў з фіз. палямі і часціцамі. Новыя магчымасці візуалізацыі гукавых палёў дала акустычная галаграфія. На Беларусі даследаванні па акустыцы праводзяцца з 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН. Найб. значныя вынікі атрыманы Ф.І.Фёдаравым у тэорыі пругкіх хваляў у крышталях.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М., 1953;

Стретт Дж.В. (лорд Рэлей). Теория звука: Пер. с англ. Т. 1—2. 2 изд. М., 1955;

Скучик Е. Основы акустики: Пер. с нем. Т. 1—2. М., 1958—59;

Фёдоров Ф.И. Теория упругих волн в кристаллах. М., 1965;

Красильников В.А., Крылов В.В. Введение в физическую акустику. М., 1984.

А.Р.Хаткевіч.

т. 1, с. 218

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)