ферамагнеты́зм

(ад фера- + магнетызм)

фіз. сукупнасць магнітных уласцівасцей рэчываў (ферамагнетыкаў), у якіх магнітныя моманты суседніх атамаў (іонаў) арыентаваны ў адным напрамку, што прыводзіць да самаадвольнай (спантаннай) намагнічанасці рэчываў (параўн. дыямагнетызм, парамагнетызм).

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

МАГНІТАСТРЫ́КЦЫЯ (ад магніт + лац. strictio сцісканне, нацягванне),

змена памераў і формы цела пры намагнічванні. Выяўлена для жалеза Дж.П.Джоўлем у 1842. Адлюстроўвае ўзаемасувязь падсістэм атамных магнітных момантаў і крышталічнай рашоткі; уласціва ўсім рэчывам.

Тлумачыцца тым, што ўзаемадзеянні, якія вызначаюць магн. стан крышталя, залежаць ад адлегласці паміж атамамі (ці іонамі). Змены магн. стану пры зменах магн. поля, т-ры, пругкіх напружанняў і інш. вядуць да зрушэння атамаў і іонаў ад стану раўнавагі і тым самым да дэфармацыі цела. Характарызуецца адноснай зменай лінейных памераў цела λ = Δl/l (лінейная М.) або аб’ёму (аб’ёмная М.) і залежыць ад напрамку вымярэння адносна знешняга магн. поля. Пры вымярэннях уздоўж поля М. наз. падоўжнай, перпендыкулярна полю — папярочнай, напр., у фера- і ферымагнетыках λ дасягае 10​−2, у антыфера-, пара- і дыямагнетыках — да 10​−6. Гл. таксама Магнітастрыкцыйныя матэрыялы.

Літ.:

Белов К.П. Магнитострикционные явления и их технические приложения. М., 1987.

Г.І.Макавецкі.

т. 9, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІЧЫ́ЛЬНІК ЭЛЕКТРЫ́ЧНЫ,

электравымяральная прылада для ўліку выпрацаванай (адпушчанай) або спажытай актыўнай і рэактыўнай электраэнергіі за пэўны прамежак часу. У ланцугах пастаяннага току (электрыфікаваны чыг. транспарт, электролізныя ўстаноўкі) выкарыстоўваюцца Л.э. магнітаэл.,фера- і электрадынамічнай, электралітычнай сістэм, у ланцугах пераменнага току (прамысл. электрапрывод, асвятляльныя сеткі, камунальныя спажыўцы) — індукцыйныя і электронныя.

Л.э. бываюць аднафазныя (1-элементныя) і трохфазныя (2- і 3-элементныя). У эл. сетках напружаннем да 1 кВ уключаюцца паслядоўна ў ланцуг або праз трансфарматары току, вышэй за 1 кВ — праз трансфарматары напружання і току. Найб. пашыраны Л.э. індукцыйнай вымяральнай сістэмы, маюць ланцугі току і напружання. Токі, якія працякаюць па гэтых ланцугах, ствараюць у электрамагнітах пераменныя магн. патокі Фu і Фi. У выніку ўзаемадзеяння патоку Фu з віхравымі токамі, якія наводзяцца ў дыску патокам Фi узнікае вярчальны момант. Колькасць абаротаў рухомай ч. лічыльніка прапарцыянальна спажытай энергіі, што паказвае лічыльны механізм, злучаны з воссю дыска.

М.А.Караткевіч.

Індукцыйны аднафазны лічыльнік электрычны: 1, 2 — электрамагніты паслядоўнага і паралельнага ланцуга; 3 — лічыльны механізм; 4 — тармазны магніт; 5 — алюмініевы дыск; 6 — нагрузка; U — напружанне; Фi Фu — магнітныя патокі, што ствараюцца токам нагрузкі і токам у ланцугу напружання.

т. 9, с. 329

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЯ АНІЗАТРАПІ́Я,

неаднолькавасць магн. уласцівасцей рэчыва (намагнічанасці, магнітнай успрыімлівасці, магн. энергіі і інш.) па розных напрамках. Абумоўлена анізатропным характарам магн. ўзаемадзеяння паміж часціцамі — носьбітамі магн. моманту ў рэчыве. Праяўляецца ў магнітаўпарадкаваных монакрышталях (фера- і ферымагнітных), полікрышт. і аморфных рэчывах. М.а. ў крышталях звязана з упарадкаваным размяшчэннем магн. момантаў іх часціц (атамаў, малекул, іонаў) і з’яўляецца вынікам магн. ўзаемадзеяння суседніх часціц і спецыфічных узаемадзеянняў іх электронаў з эл. унутрыкрышталічнымі палямі. М.а. ў полікрышталях праяўляецца пры наяўнасці ў іх магнітнай ці крышталічнай тэкстуры.

Адрозніваюць М.а. прыродную і наведзеную. Прыродная — характэрная для монакрышталёў ферамагнетыкаў, дзе вектары самаадвольнай намагнічанасці ферамагн. даменаў накіраваны ўздоўж некаторых восей крышталя (т.зв. восей лёгкага намагнічвання). Мерай прыроднай М.а. з’яўляецца энергія М.а., якая вызначаецца як работа знешняга магн. поля, неабходная для намагнічвання ферамагнетыка ў зададзеным напрамку. Наведзеная М.а. ўзнікае пры тэхнал. апрацоўцы магнітных матэрыялаў (напр., пры пракатцы, адпале, перакрышталізацыі ў магн. полі); яна з’яўляецца таксама характэрнай уласцівасцю магн. плёнак (узнікае пры напыленні ў магн. полі, напыленні пад вуглом да паверхні, эпітаксіяльным росце на монакрышт. падложцы); можа быць магнітапругкага паходжання (пры наяўнасці ў магн. узоры ўнутраных мех. напружанняў). Матэрыялы з вял. значэннямі канстант М.а. выкарыстоўваюцца ў прыстасаваннях магн. памяці.

Р.М.Шахлевіч.

т. 9, с. 481

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНЕТАХІ́МІЯ,

раздзел фізічнай хіміі, які вывучае залежнасць паміж магн. ўласцівасцямі рэчываў і іх будовай.

Асн. ўласцівасць, якая вымяраецца ў М. — магнітная ўспрыімлівасць. Звычайна яе вызначаюць па змене вагі ўзору рэчыва ў магн. полі, пры гэтым карыстаюцца метадамі, прапанаванымі англ. вучоным М.Фарадэем і швейц. хімікам Ф.Гюі. Для дыямагнітных рэчываў, пераважна арган. злучэнняў, элементы будовы малекул выводзяцца, зыходзячы з адытыўнай схемы франц. фізікахіміка П.Паскаля (1910), згодна з якой малекулярная магн. ўспрыімлівасць роўная суме ўспрыімлівасцей асобных атамаў, што ўваходзяць у састаў малекулы, з папраўкай на характар хім. сувязі паміж імі. Пры даследаванні парамагн. рэчываў (напр., комплексаў пераходных металаў, атамных кластараў) супастаўляюць эксперым. і тэарэт. значэнні магнітных момантаў ці аналізуюць іх залежнасць ад т-ры, што дазваляе меркаваць аб ступені акіслення металу, прыродзе ўзаемадзеянняў унутры комплексу і комплексу з часціцамі, якія яго акружаюць, аб прасторавай структуры і сіметрыі крышт. поля, наяўнасці фера- і антыферамагн. узаемадзеянняў у шмат’ядз. утварэннях. У М. класічныя метады даследаванняў спалучаюцца з магнітарэзананснымі метадамі (гл. Электронны парамагнітны рэзананс, Ядзерны магнітны рэзананс). Новы кірунак у М. — вывучэнне непасрэднага ўплыву магн. поля на хім. раўнавагу, кінетыку і механізм хім, рэакцый. Метады М. выкарыстоўваюцца ў аналіт. практыцы, напр., для выяўлення прымесей ферамагн. рэчываў у колькасцях, недаступных для вызначэння інш. метадамі.

Літ.:

Калинников В.Т. Ракитин Ю.В. Введение в магнетохимию. М., 1980;

Карлин Р.Л. Магнетохимия: Пер. с англ. М., 1989.

В.Н.Макатун.

т. 9, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІТАЦВЁРДЫЯ МАТЭРЫЯ́ЛЫ, магнітажорсткія матэрыялы,

фера- і ферымагнетыкі, якія маюць высокае значэнне каэрцытыўнай сілы (Hc = 10​3—10​6 А/м). Характарызуюцца высокім значэннем астаткавай магнітнай індукцыі і макс. значэннем магн. энергіі на ўчастку размагнічвання пятлі гістэрэзісу. Высокія значэнні Hc у М.м. абумоўлены затрымкай працэсу перамагнічвання. М.м. выкарыстоўваюць як пастаянныя магніты, а таксама ў гістэрэзісных рухавіках і ў якасці носьбітаў магн. памяці.

Паводле тэхналогіі фарміравання высокакаэрцытыўнага стану М.м. падзяляюць на: сталі, якія загартоўваюць на мартэнсіт; недэфармуемыя літыя сплавы жалеза, нікелю і алюмінію (алні) з дабаўкамі кобальту, тытану, медзі і інш.; дэфармуемыя сплавы жалеза, нікелю, медзі (куніфэ), кобальту, нікелю, медзі (куніко) і інш., а таксама сплавы з выкарыстаннем высакародных металаў (напр., сплавы кобальту з плацінай для вырабу звышмініяцюрных магнітаў); М.м., якія атрымліваюць прасаваннем парашкоў з іх далейшай тэрмічнай апрацоўкай. З метал. парашкоў прасаваннем без сувязнога ці спяканнем пры высокай т-ры вырабляюць металакерамічныя М.м., да якіх адносяцца матэрыялы на аснове інтэрметалідаў металаў групы жалеза з рэдказямельнымі элементамі (напр., SmCo5 пяцькобальт-самарый) для вырабу найб. энергаёмістых сучасных магнітаў. Прасаваннем парашкоў разам з сувязным, які полімерызуецца пры невысокай т-ры, атрымліваюць металапластычныя М.м. Да М.м. адносяцца таксама барыевы, стронцыевы і кобальтавы ферыты.

Літ.:

Сергеев В.В., Булыгина Т.И. Магнитотвердые материалы. М., 1980.

Г.І.Макавецкі.

Блок-схема студыйнага шпулечнага магнітафона: 1 — генератар высокай частаты; 2 — узмацняльнік запісу; 3 — узмацняльнік узнаўлення; 4 — шпулі з магнітнай стужкай; 5, 6, 7 — магнітныя галоўкі ўзнаўлення, запісу і сцірання (адпаведна).

т. 9, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНІ́ТНАЕ ПО́ЛЕ,

адна з форм існавання электрамагнітнага поля, якая выяўляецца ў сілавым уздзеянні на рухомыя эл. зарады (эл. токі) і магніты. Асн. характарыстыкі М.п. — магнітная індукцыя і напружанасць магнітнага поля. Паводле Максвела ўраўненняў крыніцамі М.п. могуць быць эл. токі, целы з ненулявым магнітным момантам і пераменныя эл. палі.

Адсутнасць у прыродзе адасобленых магн. полюсаў (гл. Манаполь магнітны) прыводзіць да таго, што М.п. саленаідальнае (лініі поля заўсёды замкнёныя) у адрозненне ад электрастатычнага поля, якое з’яўляецца патэнцыяльным (лініі поля бяруць пачатак на дадатных эл. зарадах). Пры вывучэнні ўласцівасцей М.п. пробным элементам (індыкатарам поля) служыць магн. дыполь — замкнёны плоскі контур з эл. токам або пастаянны магніт невялікіх памераў, што дае магчымасць вызначыць напрамак вектара магнітнай індукцыі ў кожным пункце поля. М.п., створанае правадніком адвольнай формы з эл. токам, вызначаецца паводле Біо—Савара закону. Наяўнасць М.п. ў касм. аб’ектаў (Сонца, зорак, некат. планет, міжпланетнай прасторы) прыводзіць да спецыфічных геамагн. і астрафіз. з’яў (напр., магнітныя буры, сінхратроннае выпрамяненне, сонечны вецер), а наяўнасць уласнага магн. моманту ў элементарных часціц — да праяўлення магн. уласцівасцей рэчыва (напр., дыямагнетызм, парамагнетызм, фера магнетызм). Напружанасць М.п. міжпланетнай прасторы 10​−3—10​−4 А/м, Зямлі ~40 А/м, зорак да 10​9—10​10 А/м; звышправодныя саленоіды могуць ствараць М.п. напружанасцю да 10​6 А/м. М.п. выкарыстоўваецца ў паскаральніках зараджаных часціц, для ўтрымання гарачай плазмы ва ўстаноўках кіравальнага тэрмаядз. сінтэзу, ва ўсіх канструкцыях і прыстасаваннях электра- і радыётэхнікі, выліч. тэхнікі і электронікі.

А.І.Болсун.

Магнітнае поле: 1 — прамалінейнага правадніка з электрычным токам (I — сіла току, B — магнітная індукцыя); 2 — саленоіда.

т. 9, с. 480

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАГНЕТЫ́ЗМ (ад грэч. magnētis магніт),

сукупнасць з’яў, звязаных з асаблівай формай узаемадзеяння паміж эл. токамі, токамі і магнітамі (целамі з магнітным момантам) і паміж магнітамі; раздзел фізікі, які вывучае гэтае ўзаемадзеянне і ўласцівасці рэчываў (магнетыкаў), у якіх яно праяўляецца.

Магн. ўзаемадзеянне цел перадаецца праз магнітнае поле, якое з’яўляецца адной з форм існавання электрамагнітнага поля. Нягледзячы на непарыўную сувязь паміж эл. і магн. з’явамі, магн. з’явы прынцыпова адрозніваюцца ад электрычных з-за адсутнасці ў прыродзе адасобленых магн. полюсаў (магн. зарадаў; гл. Манаполь магнітны). Крыніца эл. поля — эл. зарад, магн. поля — рухомы эл. зарад (электрычны ток), пераменнае (віхравое) эл. поле або элементарныя часціцы з адметным ад нуля ўласным магн. момантам. М. атамаў, малекул і макраскапічных цел вызначаецца ў канчатковым выніку М. элементарных часціц (у асн. магн. момантам электронаў). У залежнасці ад характару ўзаемадзеяння часціц-носьбітаў магн. моманту адрозніваюць М. рэчываў з атамным магн. парадкам (ферамагнетызм, ферымагнетызм, антыферамагнетызм) і М. слабаўзаемадзейных часціц (парамагнетызм, дыямагнетызм). Магн. ўласцівасці рэчываў, макраскапічныя праяўленні іх М. тлумачацца на аснове законаў квантавай механікі, разглядаюцца ў рамках тэорыі эл.-магн. поля, тэрмадынамікі і статыстычнай фізікі. М. праяўляецца ва ўсіх фізіка-хім. працэсах, што адбываюцца ў рэчыве. Магн. палі ёсць у зорак, Сонца, некат. планет Сонечнай сістэмы, у касм. прасторы. Яны ўплываюць на рух зараджаных часціц, вызначаюць многія астрафіз. і геамагн. з’явы (сонечныя ўспышкі, зямныя магн. буры і г.д.). Магн. ўласцівасці рэчываў шырока выкарыстоўваюцца ў электра- і радыётэхніцы, вылічальнай тэхніцы і тэлемеханіцы, аўтаматыцы, прыладабудаванні, марской і касм. навігацыі і інш.

З’ява М. вядома са старажытнасці. З 12 ст. ў Еўропе пачаў шырока выкарыстоўвацца магн. компас. Вучэнне пра М. развівалі У.Гільберт, Р.Дэкарт, Ф.Эпінуе, Ш.Кулон. У 1820 Х.К.Эрстэд адкрыў магн. поле эл. току, А.М.Ампер устанавіў законы магн. ўзаемадзеяння токаў. У 1830-я г. К.Гаўс і В.Вебер развілі матэм. тэорыю геамагнетызму (гл. Зямны магнетызм). Грунтоўную трактоўку з’яў М. на аснове ўяўленняў аб рэальнасці эл.-магн. поля даў М.Фарадэй, які ў 1831 адкрыў электрамагнітную індукцыю. У 1872 Дж.Максвел стварыў агульную тэорыю эл.-магн. з’яў (гл. Максвела ўраўненні). Уласцівасці фера- і парамагнетыкаў вывучалі А.Р.Сталетаў (1872) і П.Кюры (1895). У 1905 П.Ланжэвэн пабудаваў тэорыю дыямагнетызму, у 1925 С.Гаўдсміт і Дж.Уленбек адкрылі спін i М. электрона. У 1930-я г. пабудавана квантавамех. тэорыя магн. уласцівасцей свабодных электронаў (В.Паўлі, Л.Д.Ландау). Развіццё фізікі магн. з’яў прывяло да сінтэзавання новых магнітных матэрыялаў (ферытаў для ВЧ- і ЗВЧ-прыстасаванняў, высокакаэрцытыўных злучэнняў, празрыстых ферамагнетыкаў і інш.).

На Беларусі даследаванні па фізіцы магн. з’яў праводзяцца ў Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН Беларусі, БДУ, Бел. ун-це інфарматыкі і радыёэлектронікі і інш.

Літ.:

Вонсовский С.В. Магнетизм. М., 1971;

Маттис Д. Теория магнетизма: Введение в изучение кооперативных явлений: Пер. с англ. М., 1967;

Браун У.Ф. Микромагнетизм: Пер. с англ. М., 1979.

А.І.Болсун, У.М.Сацута.

т. 9, с. 476

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)