ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b⃗ вектараў a і b⃗ — вектар, праведзены з пачатку a да канца b⃗, калі канец a і пачатак b⃗ супадаюць. Складанне вектараў мае ўласцівасці: a+b⃗=b⃗+a; (a+b⃗)+c⃗=a+(b⃗+c⃗); a+0⃗=a, a+(-a)=0⃗; дзе 0⃗ — нулявы вектар, -aвектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць a - b⃗ вектараў a і b⃗ — вектар x⃗ такі, што x⃗ + b⃗ = a; рознасць a - b⃗ ёсць вектар, які злучае канец вектара b⃗ з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α || a| і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a = 0⃗, то α a = 0⃗. Уласцівасці множання вектара на лік: α(a+b⃗)=αa⃗+αb⃗; (a+b⃗)α=aα+b⃗α; α(βa⃗)=(αβ)a; 1∙a=a. Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

вектарме́тр

(ад вектар + -метр)

электрычны прыбор для вымярэння сярэдняга значэння велічыні і фазы пераменнага току або электрычнага напружання.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г., часткова)

ГАДО́ГРАФ

(ад грэч. hodos шлях, рух, кірунак + ...граф),

1) у механіцы — крывая лінія, утвораная канцом вектар-функцыі, значэнні якой пры розных значэннях аргумента адкладзены ад агульнага пачатку (пункт 0). Калі, напр., становішча рухомага пункта M вызначаецца радыус-вектарам r, то гадограф вектара r — траекторыя руху гэтага пункта. Гадограф дае геам. ўяўленне пра змяненне ў часе некат. вектар-функцыі і пра скорасць гэтага змянення, якая накіравана па датычнай да гадографа, напр., скорасць v пункта M накіравана па датычнай да гадографа вектара r, паскарэнне w — па датычнай да гадографа вектара скорасці v.

2) У сейсмалогіі — графік залежнасці паміж адлегласцю і часам, на працягу якога сейсмічныя ваганні распаўсюджваюцца ад цэнтра землетрасення або выбуху да пункта назірання. Аналіз формы гадографа выкарыстоўваецца пры даследаваннях будовы Зямлі, для разведкі карысных выкапняў і інш.

т. 4, с. 422

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНЫ ЗДАБЫ́ТАК вектараў a і b⃗, вектар c⃗, модуль якога роўны плошчы паралелаграма, пабудаванага на вектарах a і b⃗, перпендыкулярны плоскасці гэтага паралелаграма і накіраваны так, што вектары a, b⃗ і c⃗ утвараюць правую тройку. Абазначаецца c⃗ = [a b⃗] або c⃗ = a × b⃗. Уведзены У.Гамільтанам (1853). Выкарыстоўваецца ў геаметрыі, механіцы і фізіцы. Гл. таксама Вектарнае злічэнне.

т. 4, с. 64

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІО́—САВА́РА ЗАКО́Н,

закон, што вызначае вектар індукцыі магнітнага поля, створанага эл. токам. Адкрыты Ж.Б.Біо і Ф.Саварам (1820), сфармуляваны ў агульным выглядзе П.Лапласам (наз. таксама закон Біо—Савара—Лапласа).

Паводле Біо—Савара закона малы адрэзак правадніка даўж. dl, па якім працякае ток сілай I, стварае ў зададзеным пункце прасторы M, што знаходзіцца на адлегласці r ад dl, магнітнае поле з індукцыяй dB = k I   dl sinα r2 , дзе α — вугал паміж напрамкам току ў адрэзку dl і радыус-вектарам r, праведзеным ад dl да названага пункта M, k — каэфіцыент прапарцыянальнасці, які залежыць ад выбранай сістэмы адзінак; у СІ k = M0 . Вектар dB перпендыкулярны да плоскасці, у якой ляжыць dl і r, а яго напрамак вызначаецца правілам правага вінта. Біо—Савара закон выкарыстоўваецца для разлікаў пастаянных і квазістацыянарных магн. палёў.

т. 3, с. 154

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

градые́нт

(лац. gradiens, -ntis = які крочыць)

1) фіз. мера павелічэння або змяншэння ў прасторы якой-н. фізічнай велічыні пры перамяшчэнні на адзінку даўжыні;

2) мат. вектар, які паказвае напрамак найхутчэйшага ўзрастання пэўнай функцыі 4.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г., часткова)

ВУГЛАВА́Я СКО́РАСЦЬ,

вектарная велічыня ω, якая характарызуе скорасць вярчэння цвёрдага цела. Модуль вуглавой скорасці ω = lim Δt 0 Δφ Δt = dφ dt , дзе Δφ — прырашчэнне вугла павароту за прамежак часу Δt. Вектар ω накіраваны ўздоўж восі вярчэння ў той бок, адкуль паварот цела бачны супраць ходу гадзіннікавай стрэлкі (правіла правага вінта). Адзінка вуглавой скорасці ў СІ — радыян за секунду (рад/с).

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАДЫЕ́НТ [ад лац. gradiens (gradientis) які крочыць], вектар, што паказвае напрамак найхутчэйшай змены скалярнай функцыі каардынат φ=φ(x, y, z). Пазначаецца gradφ або ∇φ, дзе = i x + j y + k z — аператар Гамільтана (аператар набла), i, j, k — орты прамавугольнай дэкартавай сістэмы каардынат, gradφ = φ x i + φ y j + φ z k , |gradφ| = ( φ x ) 2 + ( φ y ) 2 + ( φ z ) 2 . Паняцце градыента выкарыстоўваецца ў механіцы, фізіцы, метэаралогіі і інш. Гл. таксама Поля тэорыя.

т. 5, с. 387

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БА́ЗІС,

база (ад грэч. basis аснова), 1) у матэматыцы — найменшае падмноства некаторага мноства, з якога пэўнымі аперацыямі можна атрымаць любы элемент гэтага мноства. Напрыклад, 1 аперацыямі складання і множання можна атрымаць любы натуральны лік. У вектарнай прасторы такі набор вектараў, што адвольны вектар адназначна выяўляецца ў выглядзе лінейнай камбінацыі вектараў гэтага набору. Колькасць элементаў базісу наз. размернасцю прасторы. Гл. таксама Артаганальная сістэма, Артаганальнае пераўтварэнне.

2) У фізіцы базіс крышталічнай структуры — поўная сукупнасць каардынатаў цэнтраў атамаў у сіметрычна незалежнай вобласці крышт. структуры. Эксперыментальнае вызначэнне праводзіцца метадамі рэнтгенаўскага структурнага аналізу, электронаграфіі, нейтронаграфіі.

т. 2, с. 220

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВУГЛАВО́Е ПАСКАРЭ́ННЕ,

вектарная велічыня ε, якая характарызуе хуткасць змены вуглавой скорасці. Пры вярчэнні цвёрдага цела вакол нерухомай восі модуль вуглавога паскарэння ε = lim Δt 0 Δω Δt = dω dt = d2φ dt2 , дзе Δω — змена вуглавой скорасці ε за прамежак часу Δω, φ — вугал павароту. Пры гэтым вектар ε накіраваны ўздоўж восі вярчэння (у бок вектара вуглавой скорасці ω пры паскораным вярчэнні і супраць ω — пры запаволеным). Адзінка вуглавога паскарэння ў СІрадыян на секунду ў квадраце (рад/с2).

т. 4, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)