ГІДРА́ЎЛІКА

(ад гідра... + грэч. aulos трубка),

навука аб законах раўнавагі і руху вадкасці і спосабах іх выкарыстання пры рашэнні практычных задач; прыкладная гідрамеханіка. Вывучае несціскальныя кропельныя вадкасці, якія лічаць суцэльным асяроддзем, а таксама газы пры скарасцях руху, значна меншых за скорасць гуку; распрацоўвае набліжаныя метады разліку і вызначае эмпірычныя залежнасці, неабходныя для праектавання гідратэхн. збудаванняў, гідраўл. машын, водаправодных, каналізацыйных, ацяпляльных сістэм і інш.

Гідраўліка падзяляецца на тэарэт. асновы гідраўлікі і практычную гідраўліку; грунтуецца на асн. ураўненнях гідрадынамікі (гл. Бернулі ўраўненне, Неразрыўнасці ўраўненне); даследуе агульныя пытанні гідрастатыкі, а таксама ціск вадкасці на сценкі пасудзін, труб, збудаванняў, машын (гл. Паскаля закон), на апушчаныя ў вадкасць целы (гл. Архімеда закон), умовы плавання цел; разглядае пытанні гідрадынамічнага супраціўлення пры розных рэжымах цячэння (гл. Ламінарнае цячэнне, Турбулентнае цячэнне) і ўмовы пераходу з аднаго рэжыму цячэння ў другі. Асн. раздзелы гідраўлікі: цячэнне ў рэках і каналах (гідраўліка адкрытых рэчышчаў), цячэнне па трубах (гідраўліка трубаправодаў), узаемадзеянне патоку і цвёрдых цел, выцяканне вадкасці праз адтуліны і вадазлівы (гідраўліка збудаванняў), рух у сітаватых асяроддзях (фільтрацыя). Прынцыпы гідрастатыкі і некаторыя палажэнні гідрадынамікі сфармуляваны яшчэ ў антычныя часы. Фарміраванне гідраўлікі як навукі распачата ў 15 ст. ў працах Леанарда да Вінчы. У 16—17 ст. пытанні гідраўліку распрацоўвалі Г.Галілей і Б.Паскаль, у 18 ст. — І.Ньютан, Д.Бернулі, Л.Эйлер і інш., у 19—20 ст. — О.Рэйнальдс, М.Я.Жукоўскі, М.М.Паўлоўскі, М.А.Веліканаў і інш. Сучасная гідраўліка падзяляецца на гідрабуд., машынабуд., падземную (нафтавая і газавая) гідраўліка, гідрааўтаматыку, магнітную гідрадынаміку і інш.

На Беларусі праблемы гідраўлікі даследуюцца ў БПА, БСГА, праектных і н.-д. ін-тах (Белгіправадгас, Цэнтр. НДІ комплекснага выкарыстання водных рэсурсаў, Бел. НДІ меліярацыі і лугаводства) і інш.

Літ.:

Штеренлихт Д.В. Гидравлика. Кн. 1—2. 2 изд. М., 1991;

Чугаев Р.Р. Гидравлика. 4 изд. Л., 1982.

У.М.Юхнавец.

т. 5, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

куды́, прысл.

1. пытальнае. У якім напрамку?, у якое месца? — Куды, дзядзька, ідзеш? — спытаў яго вартавы салдат. Якімовіч. — А цяпер куды? — спытала Святланка. — Дзе тое метро? Васілёнак. // У пытальна-клічных сказах, калі імкнуцца спыніць каго‑н. — Куды лезеш? Назад!

2. пытальнае. Разм. На што?, для якой мэты? Куды столькі грошай патрацілі?

3. неазначальнае. Разм. У якое-небудзь месца, куды-небудзь. — Дзе хлопцы? — Пайшлі ў кіно, а можа яшчэ куды падаліся.

4. адноснае. Ужываецца ў якасці злучніка: а) у даданых сказах месца (часам з суадноснымі словамі «туды», «там» у галоўным сказе). Святлела неба, і недзе там, куды бег паравоз, разгараўся ўжо новы дзень. Асіпенка. Куды вецер вее, туды галлё гнецца. З нар.; б) у даданых дапаўняльных сказах (часам з суадносным словам «тое» ў галоўным сказе). — Хто ведае, куды вядзе вось гэта шэрая вузкая дарога? Галавач; в) у даданых азначальных сказах. Усе чамусьці павярнулі галовы ў той бок, куды накіраваўся Грышка. Чарот; г) у даданым уступальным сказе ў спалучэнні з часціцамі «ні», «б ні». [Пытляваны:] А мяне куды ні пастаў, дык я ўсюды харош. Крапіва.

5. у знач. часціцы. Разм. У спалучэнні з вышэйшай ступенню прыметнікаў і прыслоўяў абазначае: значна, намнога. Гэта кніга куды цікавейшая за тую. □ — Гляджу я на нашу моладзь, і сэрца радуецца, — кажа ён. — Такія ўмовы для яе ўсюды створаны. Нам было куды цяжэй... «Звязда».

6. у знач. часціцы. Ужываецца пры пярэчанні або пры ўнясенні паправак да сваіх слоў (звычайна з паўтарэннем слова, якое аспрэчваецца). — Паедзеш у горад? — Куды там у горад! Працаваць трэба. // З давальным склонам асабовага займенніка і звычайна з інфінітывам ужываецца для вырашэння немагчымасці чаго‑н. Куды вам да яго! □ — Ай-ёй, куды яму беднаму без нагі... — пачала маці, але Міхась перапыніў яе. Брыль. А яму, дзеду Лукашу, куды было цягнуцца пехатою за блізкі свет. Якімовіч.

•••

Куды вочы глядзяць гл. вока.

Куды груган касцей не занясе гл. груган.

Куды каторы гл. каторы.

Куды ні кінь вокам гл. кінуць.

Куды ногі нясуць гл. нага.

Куды папала гл. папасці.

Не ведаць, куды (дзе) дзецца (падзецца) гл. ведаць.

Хоць куды (у знач. вык.) — добры ва ўсіх адносінах, да ўсяго прыгодны. Гэта ж не дом, а звон. Ды і астатнія пабудовы — хоць куды. М. Ткачоў.

Хто куды гл. хто.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

перане́сці, ‑нясу, ‑нясеш, ‑нясе; ‑нясём, ‑несяце; пр. перанёс, ‑несла і ‑нясла, ‑несла і ‑нясло; заг. перанясі; зак.

1. каго-што. Забраўшы з аднаго месца, перамясціць у другое, даставіць куды‑н. Перанесці дровы пад павець. Перанесці лямпу ў другі пакой. □ У той вечар .. дзеду зрабілася холадна, і ён папрасіў, каб перанеслі яго на печ. Сачанка. Пакінуўшы бацькоўскую хату, Лена ўсё, што ёй было патрэбна, перанесла і перавезла ў клуб, пасялілася там у невялічкім пакойчыку. Ваданосаў. // Несучы, перамясціць цераз што‑н., на другі бок чаго‑н. Перанесці хлапчука цераз ручай. // перан. Пераключыць увагу, думкі на што‑н. іншае. Грукат колаў Марыну з высокіх нябёс Зноў на дрогкую нашу зямлю перанёс. Куляшоў.

2. што. Змяніць месцазнаходжанне чаго‑н., размясціць у іншым месцы. Перанесці сталіцу ў іншы горад. □ Нарада па сваёй люднасці атрымалася значна большая, чым думалі, і яе прыйшлося перанесці ў памяшканне канторы. Ермаловіч. // Перамясціць, пераставіць які‑н. будынак у другое месца. Дома бацька вельмі часта.. меркаваў сам сабе, колькі спатрэбіцца новага дрэва, каб перанесці на новае месца хату. Чорны.

3. што. Пераключыць з аднаго на другое, накіраваць на што‑н. іншае. Калі артылерысты перанеслі агонь углыбіню, у бой пайшлі танкі і пяхота. Мележ. // Распаўсюдзіць, пашырыць што‑н. на каго‑н. другога, на што‑н. другое. Перанесці перадавы вопыт на ўсе прадпрыемствы. □ [Віктар] зразумеў, што гэта Карызна перанёс на яго ўвесь комплекс пачуццяў, якія раней меў да Зеленюка. Зарэцкі.

4. што. Адкласці на другі час. Перанесці пасяджэнне на вечар.

5. што. Размясціць, падаць частку якога‑н. тэксту ў другім месцы. Перанесці працяг рамана ў наступны нумар часопіса. // Аддзяліць частку слова для пераносу ў наступны радок згодна з правіламі правапісу. Перанесці апошні склад слова.

6. што. Адлюстроўваючы што‑н. графічным спосабам, падаць, абазначыць у іншым месцы. Перанесці задуму на чарцёжны ліст. Перанесці ўмоўныя знакі на карту. □ — Каб я ўмеў маляваць, — сказаў Лабановіч, — я перанёс бы яе [каплічку] на паперу. Колас.

7. што. Зазнаць, перажыць што‑н. непрыемнае, цяжкае; перацярпець. Жаўтаваты твар з прамяністымі маршчынамі вакол вачэй гаварыў, што нямала гора перанесла кабета. Васілевіч. За дзень .. [жанчыны] так стаміліся і перанеслі столькі хваляванняў, што іх адразу пацягнула да сну. Няхай. // Пераадолець, вынесці. Расліны перанеслі засуху. Перанесці запаленне лёгкіх.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

А́ТАМНАЯ ФІ́ЗІКА,

раздзел фізікі, прысвечаны вывучэнню будовы і ўласцівасцяў атамаў, а таксама элементарных працэсаў, у якіх яны ўдзельнічаюць. У шырокім сэнсе атамная фізіка (субатамная фізіка) — фізіка мікраскапічных з’яў, якім характэрна перарыўнасць рэчыва і электрамагнітнага выпрамянення і якія падпарадкоўваюцца квантавым законам (гл. Элементарныя часціцы, Атам, Малекула, Фатон).

Гіпотэза, што матэрыя складаецца з атамаў як найменшых непадзельных і нязменных часціц, узнікла ў Стараж. Грэцыі ў 5—33 ст. да нашай эры. Дасканалыя ўяўленні пра атамістычную будову рэчыва склаліся значна пазней. У сярэдзіне 19 ст. дакладна вызначаны паняцці малекулы і атама. У канцы 19 ст. адкрыты электрон, рэнтгенаўскія прамяні і радыеактыўнасць, што дало магчымасць устанавіць складаную будову атама. Сучасную ядз. мадэль атама прапанаваў Э.Рэзерфард у 1911. Гэта мадэль і квантавыя ўяўленні М.Планка, А.Эйнштэйна і інш. далі магчымасць Н.Бору ў 1913 стварыць першую квантавую тэорыю атама і яго спектраў (гл. Бора тэорыя). У 1923 Л. дэ Бройль выказаў ідэю пра хвалевыя ўласцівасці часціц рэчыва, што было пацверджана эксперыментальна ў доследах па дыфракцыі электронаў у 1927 (гл. Дыфракцыя часціц).

Тэарэтычныя асновы атамнай фізікі закладзены ў 1925—28 працамі В.Гайзенберга, Э.Шродынгера, М.Борна, П.Дзірака і інш., у выніку чаго ўзніклі квантавая механіка і квантавая электрадынаміка. На гэтай аснове дадзена тлумачэнне вял. колькасці мікраскапічных з’яў і прадказаны шэраг эфектаў на атамна-малекулярным узроўні (гл. Атамныя спектры, Вымушанае выпрамяненне, Зонная тэорыя, Фотаэфект). Для апісання ўласцівасцяў элементарных часціц і іх узаемадзеянняў створана квантавая тэорыя поля. Развіццё атамнай фізікі прывяло да карэннага перагляду асн. уяўленняў і паняццяў фізікі мікраскапічных з’яў і ўзнікнення новых галін ведаў і тэхн. дастасаванняў, напрыклад квантавай электронікі, мікраэлектронікі, фізікі цвёрдага цела. На Беларусі даследаванні па атамнай фізіцы і сумежных навуках праводзяцца з канца 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН, БДУ, Бел. політэхн. акадэміі і інш.

Літ.:

Зубов В.П. Развитие атомистических представлений до начала XIX века. М. 1965;

Хунд Ф. История квантовой физики Киев, 1980;

Джеммер М. Эволюция понятий квантовой механики: Пер. с англ. М. 1985;

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРХЕАЛО́ГІЯ ПО́МНІКАЎ АРХІТЭКТУ́РЫ,

галіна археалогіі, якая вызначае месцазнаходжанне рэшткаў загінулых або значна пераробленых помнікаў архітэктуры, вывучае іх, аднаўляе планы і, па магчымасці, рэканструюе фасады і асн. аб’ёмы помнікаў у цэлым.

Да 19 ст. манум. архітэктуру вывучалі гісторыкі архітэктуры і мастацтвазнаўцы, археал. даследаванні мелі дапаможны характар. У 1820—40-я г. ў Зах. Еўропе, у канцы 19 — пач. 20 ст. ў Расіі пачаліся навук. даследаванні арх. помнікаў. У 1930—40-я г. вылучылася ў асобную галіну археалогіі. У пасляваен. гады распрацавана методыка археал. вывучэння арх. аб’ектаў, праводзіцца сумеснае іх даследаванне аб’яднанымі экспедыцыямі археолагаў, архітэктараў-рэстаўратараў, гісторыкаў архітэктуры і мастацтвазнаўцаў.

На Беларусі першыя археал. даследаванні арх. помніка зроблены невяд. археолагам у 1790-я г. ў Полацку, у выніку якіх раскапаны падмуркі храматрыконха Бельчыцкага Барысаглебскага манастыра 12 ст. У 1-й пал. 19 ст. праводзілася візуальнае мастацтвазнаўчае і гіст. архіўнае вывучэнне помнікаў архітэктуры. Рус. і польск. даследчыкі абследавалі шмат помнікаў, зрабілі іх пач. абмеры, вывучалі буд. матэрыялы і сістэмы муровак, сабралі вял. факталагічны матэрыял па гісторыі бел. архітэктуры і спрабавалі яго крытычна асэнсаваць. Часам даследаванні спалучаліся з рамонтна-рэстаўрацыйнымі работамі. Археалогія помнікаў архітэктуры актывізавалася ў канцы 1920—1-й пал. 1930-х г. (працы І.Хозерава, М.Шчакаціхіна). На высокім навук. узроўні праведзены раскопкі полацкіх арх. помнікаў 12 ст., што дазволіла вылучыць іх у самастойную Полацкую школу дойлідства. У пасляваенны перыяд раскопкі М.Вароніна, М.Каргера, П.Рапапорта, В.Булкіна далі магчымасць па-новаму ўбачыць і растлумачыць складаныя працэсы станаўлення і развіцця архітэктуры зах. зямель Стараж. Русі. З канца 1960-х г. пачаліся раскопкі помнікаў 13—18 ст., вынікі іх надрукаваны ў працах М.Ткачова і М.Малеўскай. У апошні час шырока вывучаецца культавая і грамадзянская архітэктура эпохі Адраджэння і барока (раскопкі І.Чарняўскага, З.Пазняка, А.Кушнярэвіча і інш.).

Літ.:

Михайловский Е.В. Реставрация памятников архитектуры. М., 1971;

Раппопорт П.А. О методике археологических раскопок памятников древнерусского зодчества // Краткие сообщения Ин-та археологии АН СССР. М., 1973. Вып. 135;

Трусов О.А. Памятники монументального зодчества Белоруссии XI—XVII вв.: Архит.-археол. Анализ. Мн., 1988.

А.А.Трусаў.

т. 1, с. 523

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЫФМЕ́ТЫКА

(ад грэчаскага arithmos лік),

навука, галоўны аб’ект якой цэлыя, рацыянальныя лікі і дзеянні над імі. Узнікла ў старажытныя часы з практычных патрэб чалавека лічыць і вымяраць. Для падліку вялікай колькасці аб’ектаў створаны сістэмы лічэння. Найбольш зручная дзесятковая сістэма лічэння; існуюць таксама сістэмы лічэння з асновамі 5, 12, 20, 40, 60 і нават 11 (Новая Зеландыя). З пашырэннем вылічальнай тэхнікі выкарыстоўваецца двайковая сістэма лічэння.

Да пачатку нашай эры былі атрыманы дастаткова глыбокія вынікі: даказана бесканечнасць мноства простых лікаў, несувымернасць стараны квадрата і яго дыяганалі (па сутнасці доказ ірацыянальнасці ліку √2), створаны алгарытм выяўлення агульнай меры двух адрэзкаў і найбольшага агульнага дзельніка, Піфагорам знойдзены агульны выгляд цэлалікавых катэтаў і гіпатэнузы прамавугольных трохвугольнікаў, значны ўплыў на развіццё арыфметыкі зрабіў Архімед. Фундаментальнае значэнне арыфметыкі як навукі стала зразумелым у канцы 17 стагоддзя ў сувязі з далучэннем да яе паняцця ірацыянальнага ліку. Развіццё апарату сувязяў паміж гэтымі лікамі і іх рацыянальнымі набліжэннямі (у прыватнасці, дзесятковымі), а таксама вынаходства і дастасаванне лагарыфмаў (шатландскі матэматык Дж.Непер) значна пашырылі тэматыку даследаванняў. Шматлікія пытанні знайшлі вырашэнне ў лікаў тэорыі. Спроба Г.Грасмана аксіяматычнай пабудовы арыфметыкі (сярэдзіна 19 стагоддзя) завершана італьянскім матэматыкам Дж.Пеана ў выглядзе 5 аксіём: 1) адзінка ёсць натуральны лік; 2) наступны за натуральным лікам ёсць таксама натуральны лік; 3) у адзінкі няма папярэдняга натуральнага ліку; 4) калі натуральны лік a стаіць за натуральным лікам b і за натуральным лікам c, то b і c тоесныя; 5) калі якое-небудзь сцвярджэнне даказана для адзінкі і калі з дапушчэння, што яно праўдзівае для натуральнага ліку n, вынікае, што яно выконваецца і для наступнага за n натуральнага ліку, то гэта сцвярджэнне справядліва для адвольнага натуральнага ліку (аксіёма поўнай матэматычнай індукцыі). Па-за прапанаванай сістэмай аксіём застаюцца многія пытанні, у якіх вывучаецца ўся бесканечная сукупнасць натуральных лікаў, што патрабуе даследавання несупярэчлівасці адпаведнай сістэмы аксіём і больш дэталёвага аналізу сэнсу сцвярджэнняў, якія вынікаюць з яе. Як навука арыфметыка часам атаясамліваецца з тэорыяй лікаў.

Літ.:

История математики с древнейших времен до начала XIX столетия. Т. 1—3. М., 1970—72. Депман И.Я. История арифметики. 2 изд. М., 1965.

В.І.Бернік.

т. 2, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛА́КТЫКА

(ад познагрэч. galaktikos малочны, млечны),

гіганцкая зорная сістэма, да якой належаць Сонца і ўся Сонечная сістэма разам з Зямлёй. У яе ўваходзяць не менш за 100 млрд. зорак (іх агульная маса каля 10​11 мас Сонца), міжзорнае рэчыва (газ і пыл, маса якіх каля 0,05 масы ўсіх зорак), касм. часціцы, эл.-магн. і гравітацыйнае поле.

Структура Галактыкі неаднародная. Адрозніваюць 3 асн. падсістэмы: сферычную (гала) — шаравыя скопішчы, чырвоныя гіганты, субкарлікі, пераменныя зоркі тыпу RR-Ліры, якія рухаюцца вакол цэнтра мас Галактыкі па выцягнутых арбітах у разнастайных напрамках і не ўдзельнічаюць у вярчэнні галактычнага дыска; прамежкавую (дыск) — большасць зорак галоўнай паслядоўнасці, у т. л. Сонца, зоркі-гіганты, белыя карлікі, планетарныя туманнасці; скорасць іх вярчэння мяняецца з адлегласцю ад цэнтра; узрост — некалькі млрд. гадоў; плоскую (тонкі дыск ці спіральныя рукавы) — маладыя зоркі, міжзорны газ і пыл, доўгаперыядычныя цэфеіды, пульсары, многія галактычныя крыніцы гама-, рэнтгенаўскага і інфрачырвонага выпрамянення; узрост гэтых зорак не большы за 100 млн. гадоў, яны не паспелі значна аддаліцца ад месцаў свайго нараджэння, таму спіральныя галіны Галактыкі лічаць месцам утварэння зорак. Цэнтральная вобласць Галактыкі (ядро) знаходзіцца ў напрамку сузор’я Стралец і заслонена ад зямнога назіральніка міжзорнымі воблакамі касм. пылу і газу. Памеры ядра Галактыкі больш за 1000 пк. Яно з’яўляецца крыніцай магутнага радыевыпрамянення, што сведчыць пра актыўныя працэсы, якія адбываюцца ў ім. Самая знешняя частка сферычнай падсістэмы — карона Галактыкі радыусам каля 70 кпк і масай, у 10 разоў большай за масу ўсёй астатняй Галактыкі. Сонца, знаходзіцца на адлегласці 8,5 кпк ад цэнтра, амаль дакладна ў плоскасці Галактыкі, і аддалена ад яе на Пн прыблізна на 25 кпк Скорасць вярчэння Сонца вакол цэнтра Галактыкі 230 км/с. Для зямнога назіральніка зоркі канцэнтруюцца ў напрамку плоскасці Галактыкі і зліваюцца ў бачную карціну Млечнага Шляху. Знаходжанне Сонца паблізу плоскасці Галактыкі ўскладняе даследаванне нашай зорнай сістэмы.

Літ.:

Марочник Л.С., Сучков А.А. Галактика. М., 1984;

Воронцов-Вельяминов Б.А. Очерки о Вселенной. 8 изд. М., 1980;

Климишин И.А. Открытие Вселенной. М., 1987.

Н.А.Ушакова.

т. 4, с. 448

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕТРЫ́ЧНАЯ О́ПТЫКА,

раздзел оптыкі, які вывучае законы распаўсюджвання святла на аснове ўяўлення пра светлавыя прамяні як лініі, уздоўж якіх перамяшчаецца светлавая энергія. У аднародным асяроддзі прамяні прамалінейныя, у неаднародным скрыўляюцца, на паверхні раздзела розных асяроддзяў мяняюць свой напрамак паводле законаў пераламлення і адбіцця святла. Асноўныя законы геаметрычнай оптыкі вынікаюць з Максвела ўраўненняў, калі даўжыня светлавой хвалі значна меншая за памеры дэталей і неаднароднасцей, праз якія праходзіць святло; гэтыя законы фармулюцца на аснове Ферма прынцыпу.

Уяўленне пра светлавыя прамяні ўзнікла ў ант. навуцы. У 3 ст. да н.э. Эўклід сфармуляваў закон прамалінейнага распаўсюджвання святла і закон адбіцця святла. Геаметрычная оптыка пачала хутка развівацца ў сувязі з вынаходствам у 17 ст. аптычных прылад (лупа, падзорная труба, тэлескоп, мікраскоп), у гэтым асн. ролю адыгралі даследаванні Г.Галілея, І.Кеплера, В.Дэкарта і В.Снеліуса (эксперыментальна адкрыў закон пераламлення святла). У далейшым геаметрычная оптыка развівалася як дастасавальная навука, вынікі якой выкарыстоўваліся для стварэння розных аптычных прылад. Для атрымання нескажонага відарыса аптычнага лінзавая сістэма адпавядае пэўным патрабаванням: пучкі прамянёў, што выходзяць з некаторага пункта аб’екта, праходзяць праз сістэму і збіраюцца ў адзін пункт; відарыс геаметрычна падобны да аб’екта і не скажае яго афарбоўкі. Любая аптычная сістэма задавальняе патрабаванні, не звязаныя афарбоўкай, калі відарыс ствараецца параксіянальнымі прамянямі (бясконца блізкімі да аптычнай восі). Фактычна ў стварэнні відарыса ўдзельнічаюць шырокія пучкі прамянёў, нахіленыя да восі пад значнымі вугламі. У выніку наяўнасці аберацый аптычных сістэм яны не задавальняюць гэтыя патрабаванні. На аснове законаў геаметрычную оптыку памяншаюць аберацыі да дапушчальна малых значэнняў падборам гатункаў шкла, формы лінзаў і іх узаемнага размяшчэння. Для праектавання асабліва высакаякасных аптычных сістэм карыстаюцца таксама хвалевай тэорыяй святла.

Асн. палажэнні і законы геаметрычнай оптыкі выкарыстоўваюць пры праектаванні лінзавых аптычных сістэм (аб’ектывы, мікраскопы, тэлескопы і інш.), распрацоўцы і даследаванні лазерных рэзанатараў, прылад з валаконна-аптычнымі элементамі, факусатараў і канцэнтратараў светлавой, у т. л. сонечнай, энергіі, сістэм асвятлення і сігналізацыі ў аўтамаб., паветр. і марскім транспарце.

Літ.:

Слюсарев Г.Г. Методы расчета оптических систем. 2 изд. Л., 1969;

Борн М., Вольф Э. Основы оптики: Пер. с англ. М., 1970;

Вычислительная оптика: Справ. Л., 1984.

Ф.К.Руткоўскі.

т. 5, с. 120

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНІЯ́ЛЬНАСЦЬ

(ад лац. genius геній, дух, ахоўнік),

найвышэйшая ступень творчай адоранасці і развіцця здольнасцей чалавека. Праяўляецца ў розных сферах жыццядзейнасці людзей: у навуцы, мастацтве, рэлігіі, палітыцы, ваен. справе, педагогіцы, медыцыне і інш. З’яўленне геніяльных людзей (геніяў) абумоўлена ўздзеяннем многіх фактараў; спадчыннасць, прыродныя здольнасці, сямейнае і грамадскае выхаванне, спрыяльныя абставіны сац.-эканам., паліт., культ.-рэліг. жыцця грамадства, уласнае імкненне да самаўдасканалення і самарэалізацыі. Большасць сучасных даследчыкаў прытрымліваецца меркавання, што на з’яўленне і развіццё геніяльных людзей адначасова ўплываюць прыродныя здольнасці, спадчыннасць, асаблівасці выхавання і сацыялізацыі асобы.

У розных народаў свету на працягу іх развіцця былі свае геніяльныя мысліцелі, музыканты, мастакі, пісьменнікі, грамадска-паліт., рэліг. і ваен. дзеячы. Не заўсёды дзейнасць геніяў, якія нярэдка значна апярэджвалі свой час, належным чынам ацэньвалася іх сучаснікамі, але яна часта вызначала цэлыя эпохі ў сац. і культ. жыцці грамадства. Пра наяўнасць геніяльнасці ў чалавека гавораць тады, калі ён з’яўляецца аўтарам вял. адкрыццяў, родапачынальнікам новых тэорый, канцэпцый і навук. школ, засн. арыгінальных маст. стыляў, жанраў, ініцыятарам і правадніком перспектыўных навацый у паліт., эканам., рэліг. і ваен. сферах. У перыяд антычнасці геніяльнасць лічылі боскім дарам (Платон, неаплатаністы), а яе носьбітаў (геніяў) — шчаслівымі выбраннікамі багоў. У эпоху Адраджэння пашырыўся культ генія як асобы з унікальным творчым пачаткам (Леанарда да Вінчы, Дж.Вазары, Ю.Ц.Скалігер). Геніяльнасць ужо лічылі не дарам багоў, а натуральнай прыроджанай якасцю, уласцівай пераважна дзеячам мастацтва. Тады ж тэрмін геніяльнасць пачалі выкарыстоўваць у сучасным сэнсе гэтага слова, хоць у дачыненні да навукоўцаў гэтае паняцце замацавалася толькі ў 19 ст. У перыяд росквіту рамантызму (18 — 1-я пал. 19 ст.) геніяльнасць нярэдка вызначалася як містычная, ірацыянальная, неасэнсаваная здольнасць чалавека да творчай дзейнасці. І.Кант лічыў геніяльнасць «прыроджанымі задаткамі душы», І.В.Гётэ — найвышэйшым узроўнем усякай прадуктыўнасці, а генія, адпаведна, «прадуктыўнай сілай, што робіць дзеянні, вартыя бога і прыроды»; Ф.Шылер раскрываў прыроду геніяльнасці праз паняцце «наіўнасці» інстынктыўнага следавання прыродзе; Ф.Ніцшэ трактаваў генія як «звышчалавека», які супрацьстаіць аморфным масам, натоўпу.

Літ.:

Гончаренко Н.В. Гений в искусстве и науке. М., 1991;

Грузенберг С.О. Гений и творчество. Л., 1924;

Жоли Г. Психология великих людей. СПб., 1894;

Оствальд В. Великие люди;

Пер. с нем. СПб., 1910.

Э.Дубянецкі.

т. 5, с. 158

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЭНЕРГЕ́ТЫКА

(ад гідра... + энергетыка),

галіна энергетыкі, звязаная з выкарыстаннем мех. энергіі воднага патоку пераважна для выпрацоўкі электраэнергіі. Аснова гідраэнергетыкі — гідраэнергетычныя рэсурсы, якія адносяцца да ўзнаўляльных. Электраэнергія выпрацоўваецца на гідраўлічных электрастанцыях (ГЭС), акумулятыўных і прыліўных ГЭС. Гідраэнергетыка значна менш за інш. віды энергетыкі забруджвае навакольнае асяроддзе, аднак гідратэхн. збудаванні, асабліва плаціны, нярэдка выклікаюць парушэнне экалагічнай раўнавагі.

Са старажытнасці чалавек выкарыстоўвае энергію цякучай вады для прывядзення ў рух вадзянога кола на млынах — першых гідрасілавых установак, якія захаваліся да нашых дзён. Да вынаходства паравой машыны вадзяное кола было асн. рухавіком у вытв-сці на металургічных, лесапільных, ткацкіх і інш. прадпрыемствах. Новае значэнне набыла гідраэнергетыка ў 1-й пал. 19 ст., калі былі вынайдзены гідраўлічная турбіна, электрамашына і спосабы перадачы эл. энергіі на вял. адлегласці. У канцы 19 ст. пачалося асваенне гідраэнергіі на ГЭС у ЗША, Расіі, Германіі, гідраэнергетыка аформілася ў самаст. галіну энергетыкі. У 1913 устаноўленая магутнасць усіх ГЭС Расіі (іх было 78) не перавышала 35 МВт; у ЗША працавала ГЭС Адамс на Ніягарскім вадаспадзе магутнасцю 37 МВт. У 1-й пал. 20 ст. доля гідраэнергетыкі ў сусв. выпрацоўцы электраэнергіі хутка расла, але з 1960 пачала сістэматычна скарачацца.

У 1994 у свеце выпрацавана 12,1 трлн. кВт·гадз электраэнергіі, з іх 17% на ГЭС. У некат. краінах доля воднай энергіі ў выпрацоўцы электраэнергіі можа быць значнай. Паводле некаторых даных яна можа быць большай за 90% у Парагваі, Нарвегіі, Гане, Бразіліі і інш. Сярод краін СНД адносна высокую долю ГЭС у вытв-сці электраэнергіі маюць Таджыкістан (97%) і Кіргізія (91%). На Беларусі гідраэнергетыка дае менш за 0,1% выпрацоўкі электраэнергіі (1995). Устаноўленая магутнасць 11 буйных ГЭС у сярэдзіне 1970-х г. дасягала 10 МВт, аднак з развіццём Беларускай энергетычнай сістэмы частка іх закансервавана і перастала дзейнічаць. Найб. значныя з дзеючых ГЭС: Асіповіцкая на р. Свіслач (2250 кВт), Чыгірынская на р. Друць (1500 кВт), Гезгальская на р. Моўчадзь (550 кВт), Лукомская на р. Лукомка (500 кВт). Устаноўленая магутнасць 9 дзеючых ГЭС 6,8 МВт, яны выпрацоўваюць 20 млн. кВт·гадз электраэнергіі (1995).

В.М.Сасноўскі.

т. 5, с. 239

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)