ВО́ДАРАСЦІ

(Algae),

зборная група ніжэйшых споравых, пераважна водных, раслін. Для водарасцей характэрна адсутнасць тыповых для вышэйшых раслін сцябла, лісця і каранёў, аднак у некаторых цела падзелена на ліста- і сцеблападобныя часткі. Прадстаўлены аднаклетачнымі (ад долей мкм), каланіяльнымі і шматклетачнымі слаявіннымі, або таломнымі (даўж. да 60 м), жыццёвымі формамі. Сасудзістая сістэма адсутнічае. Рухомыя водарасці маюць жгуцікі, часам вочка і скарачальныя вакуолі. Размнажэнне разнастайнае: вегетатыўнае, бясполае і палавое (галагамія, ізагамія, анізагамія і аагамія). У шэрагу водарасцей назіраецца строгае чаргаванне пакаленняў — спарафіта і гаметафіта. Жыўленне аўтатрофнае, гетэратрофнае і галазойнае (фагатрофнае); ёсць паразітныя формы. Хларапласты (храматафоры) клетак маюць хларафіл a і b ці a і c, таксама дадатковыя пігменты — фікабіліны (фікацыян, фікаэрытрын, фікаксанцін, карацін і інш.), якія маскіруюць зялёны колер хларафілу і надаюць водарасцям жоўта-зялёную, жоўтую, бурую, чырв., сінюю і сіне-зялёную афарбоўкі.

Вядома больш за 38 тыс. відаў. У залежнасці ад біяхім. асаблівасцей (набору пігментаў, саставу клетачнай абалонкі, тыпу запасных рэчываў) і субмікраскапічнай будовы клетак іх адносяць да аднаго з 10 аддзелаў (тыпаў) водарасцей: дыятомавыя, зелёныя, чырвоныя, сіне-зялёныя, бурыя, пірафітавыя, жоўта-зялёныя, залацістыя, харавыя і эўгленавыя (гл. адпаведныя артыкулы). Усе аддзелы ў працэсе эвалюцыі развіваліся ў асноўным незалежна. Найб. старажытныя з іх — сіне-зялёныя (цыянеі). Водарасці — найб. верагодныя продкі наземных раслін. Сіне-зялёныя і прахларафітавыя водарасці — пракарыёты. Іх часта лічаць асобнай групай арган. свету або адносяць да бактэрый. Пашыраны па ўсім зямным шары. Жывуць пераважна ў вадзе (прэснай і салёнай), у глебе і на яе паверхні, на кары дрэў, камянях, інш. субстратах, у снезе, лёдзе, у сімбіёзе з інш. раслінамі (напр., лішайнікі), могуць выкарыстоўваць для жыццядзейнасці атм., грунтавую і інш. вільгаць. На Беларусі адзначана больш за 2200 відаў, разнавіднасцей і формаў, якія аб’ядноўваюцца ў 300 родаў, 210 з іх глебавыя водарасці, астатнія пашыраны ў розных вадаёмах, на кары дрэў, камянях, розных грунтах і інш. субстратах. Найб. разнастайныя паводле відавога складу дыятомавыя (каля 930 таксонаў з 47 родаў) і зялёныя (640 таксонаў з 139 родаў); зарэгістраваны 320 таксонаў сіне-зялёных, 186 эўгленавых, больш за 50 залацістых, каля 50 жоўта-зялёных, больш за 40 пірафітавых, 13 харавых і 3 віды чырвоных водарасцей.

Водарасці (пераважна фітапланктон) — галоўныя прадуцэнты арган. рэчываў у водным асяроддзі (іх біямаса ў Сусветным ак. складае 1,7 млрд. т), у працэсе фотасінтэзу выдзяляюць у ваду і атмасферу кісларод. Многія віды водарасцей — індыкатары якасці вады, вызначаюць трафічны статус вадаёма. Багатыя вітамінамі (напр., 100 г сухой масы хларэлы задавальняюць сутачную патрэбу чалавека і с.-г. жывёлы ў вітамінах), мінер. солямі, мікраэлементамі. Колькасць бялку, алею і вугляводаў у розных відаў водарасцей ад 5 да 50—80%. Выкарыстоўваюцца ў харч., мед., папяровай, нафтавай, хім. і інш. прам-сці, з іх атрымліваюць агар-агар, альгінаты, ёд, калійныя солі, цэлюлозу, спірт, кармавы бялок, воцатную і альгінавыя кіслоты. Многія водарасці спажываюцца чалавекам (пераважна марскія — марская капуста і салата), ідуць на корм жывёле, угнаенне, служаць важнымі кампанентамі замкнёных экасістэм на касм. караблях і падлодках (напр., хларэла), таксама сістэм біял. ачысткі сцёкавых вод (напр., пратакокавыя водарасці), кормам для зоапланктону і рыб. Масавае развіццё («цвіценне») водарасцей пагаршае якасць вады, парушае работу фільтраў на ачышчальных збудаваннях, выклікае замор рыбы. Некаторыя віды выдзяляюць таксічныя рэчывы, небяспечныя для жывых арганізмаў. Для барацьбы з непажаданымі відамі водарасцей выкарыстоўваюць альгіцыды. Адклады выкапнёвых дыятомавых водарасцей утвараюць вапняковыя і даламітавыя пароды — дыятаміты і інш. Вывучэнне выкапнёвых водарасцей і іх адкладаў мае важнае стратыграфічнае і палеаэкалагічнае значэнне. Водарасці — прадмет вывучэння альгалогіі.

Літ.:

Водоросли: Справ. Киев, 1989;

Жизнь растений. Т. 3. Водоросли. Лишайники. М., 1977;

Саут Р., Уиттик А. Основы альгологии: Пер. с англ. М., 1990.

Т.М.Міхеева.

т. 4, с. 249

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЗО́ТНЫЯ ЎГНАЕ́ННІ,

мінеральныя і арган. рэчывы, якія выкарыстоўваюцца для забеспячэння раслін азотам. Падзяляюцца на арганічныя ўгнаенні (гной, торф, кампост), якія акрамя азоту маюць у сабе інш. элементы, мінеральныя ўгнаенні (выпускаюцца прам-сцю ў цвёрдым ці вадкім стане) і зялёныя ўгнаенні (гл. Сідэрацыя). У мінеральных азот можа быць у аміячнай (NH3), аміячна-нітратнай (NH3 і NO3), нітратнай (NO3) і аміднай (NH2) формах. Асн. віды мінер. азотных угнаенняў: аміячныя, аманійныя, нітратныя, аманійна-нітратныя, амідныя, аманійна-нітратна-амідныя.

Аміячныя і аманійныя ўгнаенні: вадкі аміяк, аміячная вада, сульфаты амонію, амонію-натрыю. Раствараюцца ў глебавай вадзе, значная частка іонаў амонію звязваецца ў маларухомую форму, якая пад уздзеяннем спецыфічных бактэрый глебы пераходзіць у больш рухомую нітратную форму і засвойваецца раслінамі. Выкарыстоўваюцца для ўсіх с.-г. культур на някіслых глебах і кіслых пры іх выпнаванні. Нітратныя ўгнаенні: натрыевая і кальцыевая салетры. Іоны натрыю і кальцыю паглынаюцца цвёрдай фазай глебы і раслінамі спажываюцца менш, чым нітратны азот, што прыводзіць да падшчалочвання глебы. Выкарыстоўваюцца на ўсіх глебах для ўнясення перад сяўбой і для ўсіх відаў раслін у перыяд вегетацыі. Аманійна-нітратныя ўгнаенні: аміячная салетра, сумесі сульфат-нітрат амонію, вапнава-аміячная салетра. Выкарыстоўваюцца ў розных кліматычных зонах для розных глебаў. Амідныя ўгнаенні бываюць хутка дзейныя (карбамід) і павольна дзейныя (урэаформ—карбаміда-фармальдэгідныя ўгнаенні). Аманійна-нітратна-амідныя ўгнаенні — канцэнтраваныя растворы карбаміду, нітрату амонію і іх растворы ў аміячнай вадзе (аміякаты). Эфектыўныя пры ўнясенні ў глебу для падкормкі раслін, аміякаты — для невегетуючых с.-г. культур. На Беларусі (Гродзенскі азотна-тукавы завод) вырабляюць аміячную салетру, карбамід, вадкія ўгнаенні і сульфат амонію.

Літ.:

Агрохимия. М., 1982;

Баранов П.А., Алейнов Д.П., Олевский В.М. Азотные растворы... // Химия в сельском хозяйстве. 1983. № 5.

т. 1, с. 171

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЎТАМАБІ́ЛЬНАЯ ДАРО́ГА,

дарога для руху аўтамабільнага транспарту. Асн. эементы: земляное палатно (у насыпе ці ў выемцы, з вышкамі і водаадводнымі канавамі), шматслойнае дарожнае адзенне (з трывалым верхнім слоем-дарожным пакрыццём), штучныя збудаванні (масты, тунэлі, пуцеправоды, дрэнажныя сістэмы, падпорныя сценкі, ахоўныя галерэі і інш.). Высокакатэгарыйныя аўтамабільныя дарогі абсталёўваюцца знакамі дарожнымі, святлафорамі, інфарм. табло, сродкамі тэхнал. і аварыйнай сувязі, асвятляльнымі сістэмамі, будынкамі і збудаваннямі аўтасэрвісу (аўтазаправачныя станцыі, аўтавакзалы, матэлі, станцыі тэхн. абслугоўвання і інш.), а таксама будынкамі дарожна-эксплуатацыйных і аўтатрансп. службаў. Аўтамабільныя дарогі маюць таксама развязкі, падземныя пераходы, жывёлапрагоны, з’езды і ўезды, пераходна-скорасныя палосы, веласіпедныя дарожкі, снегаахоўныя палосы, дэкар. насаджэнні і інш.

Праезная частка можа мець 1—4 і болей палос руху. Па баках праезнай часткі робяць абочыны, паміж сустрэчнымі напрамкамі — раздзяляльную паласу. У залежнасці ад разліковай інтэнсіўнасці руху аўтамабільныя дарогі падзяляюцца на 5 катэгорый. Шырыня праезнай часткі дарогі 1-й катэгорыі 2×7,5 м і больш, 5-й катэгорыі 4,5 м, разліковая скорасць руху адпаведна 150 і 60 км/гадз. Дарогі 1—3-й катэгорый маюць асфальта- ці цэментабетоннае пакрыццё, 3—4-й — пакрыццё з каменных матэрыялаў, умацаваных арган. ці мінер. вяжучымі. Дарогі 4—5-й катэгорыі пераважна з пясчана-жвіровых сумесяў ці грунтоў, стабілізаваных вяжучымі або грануламетрычнымі дабаўкамі. Аўтамабільныя дарогі бываюць агульнага карыстання (рэспубліканскія і мясцовыя) і ведамаснага (с.-г., прамысл. прадпрыемстваў, лясныя, рэкрэацыйныя, гар. і інш.). Аўтамабільныя дарогі для скораснага руху аўтатранспарту без перасячэнняў на адным узроўні наз. аўтамагістралямі. Аўтамабільная дарога Брэст—Мінск — граніца Расійскай Федэрацыі мае статус міжнароднай (Е-30). Усяго ў Беларусі больш за 50 тыс. км дарог агульнага карыстання і каля 200 тыс. км ведамасных, у тым ліку 10 тыс. км у гарадах і населеных пунктах.

Літ.:

Бабков В.Ф., Андреев О.В., Замахов М.С. Проектирование автомобильных дорог Ч. 1—2. 3 изд. М., 1970;

Морозов И.В. Планета дорог. Мн., 1992.

І.І.Леановіч.

т. 2, с. 111

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АМАЗО́НКА

(Amazonas),

рака ў Паўд. Амерыцы, пераважна ў Бразіліі, найбольшая ў свеце па памерах басейна і воднасці і другая па даўжыні. Утвараецца ад зліцця рэк Мараньён і Укаялі. Даўж. ад вытоку р. Мараньён 6400 км, ад вытоку Укаялі больш за 7000 км. Пл. бас. 7180 тыс. км². Б. ч. басейна Амазонкі ў межах Амазонскай нізіны. Пачынаецца ў Андах, упадае ў Атлантычны ак., утварае самую вял. ў свеце ўнутраную дэльту (больш за 100 тыс. км²) і лейкападобнае вусце. Больш за 500 прытокаў, род іх каля 20 даўжынёй больш за 1500 км. Найб. справа — Журуа, Пурус, Мадэйра, Тапажос, Шынгу, Такантынс (упадае ва ўсх. рукаў дэльты Амазонкі — Пару), злева — Жапура, Рыу-Негру (прыток Касік’ярэ злучае бас. Амазонкі з р. Арынока — найб. выразны прыклад біфуркацыі рэк). Шыр. Амазонкі ў месцы сутокаў Мараньёна і Укаялі 1,5 км, у сярэднім цячэнні да 5 км, у ніжнім 15—20 км, перад вусцем 80—150 км. Жыўленне пераважна дажджавое. Рака паўнаводная ўвесь год, макс. ўзровень у маі—ліп., мінімальны — у жн.—верасні. Сярэднегадавы расход вады ў ніжнім цячэнні каля 220 тыс. м³/с, макс. — больш за 300 тыс. м³/с. Сярэднегадавы сцёк каля 7000 км³ (каля 15% агульнага гадавога сцёку ўсіх рэк зямнога шара). Прылівы падымаюцца ўверх па рацэ на 1400 км. Амазонка і яе прытокі багатыя арган. рэчывамі. У водах Амазонкі — кайманы, прэснаводныя дэльфіны, ламанціны. Рыбалоўства. У Амазонцы і яе прытоках 2 тыс. відаў прэснаводных рыб, сярод якіх драпежныя піранья, электрычны вугор. Амазонка мае значны энергет. патэнцыял. Даўжыня ўсіх водных шляхоў у бас. Амазонкі каля 25 тыс. км. Рака суднаходная на 4300 км ад вусця (да Андаў), да г. Манаус (1690 км) падымаюцца акіянскія судны. Гал. парты: Белен (Пара), Сантарэн, Обідус, Манаус (Бразілія), Ікітас (Перу).

т. 1, с. 303

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАІЗАЛЯЦЫ́ЙНЫЯ МАТЭРЫЯ́ЛЫ,

матэрыялы для аховы (гідраізаляцыі) буд. канструкцый, будынкаў і збудаванняў ад шкоднага ўздзеяння вады і хімічна агрэсіўных водных раствораў. Падзяляюцца на проціфільтрацыйныя (герметызавальныя) і процікаразійныя; паводле віду асн. матэрыялу — на нафтабітумныя, дзёгцевыя, палімерныя, армацэментавыя і інш. (у іх састаў могуць уводзіцца мінер. напаўняльнікі і мадыфікаваныя дабаўкі — растваральнікі, стабілізатары, пластыфікатары, антысептыкі, структураўтваральнікі і г. д.). Бываюць абклеечныя, абмазачныя, цвёрдыя і пластычныя. Могуць арміравацца стальнымі або палімернымі валокнамі, метал. або шкласеткай, шклотканінай і інш.

Абклеечныя гідраізаляцыйныя матэрыялы — руберойд, пергамін, гідраізол, шклоруберойд, металаізол і інш. рулонныя матэрыялы, аснова якіх (з кардону, шкловалакна, метал. фольгі і інш.) прамочана або пакрыта бітумам ці дзёгцевымі рэчывамі. Укладваюць у некалькі слаёў, змацоўваюць масцікай. Абмазачныя гідраізаляцыйныя матэрыялы — гарачыя або халодныя бітумныя і дзёгцевыя масцікі, бітумныя лакі і фарбы з напаўняльнікамі, пасты і эмульсіі (гл. Лакафарбавыя матэрыялы). Выкарыстоўваюць для ізаляцыі трубаправодаў, падземнай часткі жалезабетонных канструкцый, для аховы метал. канструкцый ад карозіі. Цвёрдыя гідраізаляцыйныя матэрыялы — тынк цэментавы (з воданепрымальнымі і ўшчыльняльнымі дабаўкамі), асфальтавы і інш.; пліты і маты асфальтавыя (арміраваныя і неарміраваныя, гарачапрасаваныя); прыродныя, керамічныя і бетонныя камяні, прамочаныя арган. вяжучымі рэчывамі; жалезабетонныя вырабы (бетоны высокай шчыльнасці), а таксама лісты са сталі і інш. Выкарыстоўваюць для аховы фундаментаў і сцен будынкаў, тунэляў, рэзервуараў, гідратэхн. збудаванняў. Пластычныя гідраізаляцыйныя матэрыялы падзяляюцца на масцікавыя (аналагічныя абмазачным, але наносяцца большай колькасцю слаёў), плітачныя (сумесь бітумаў з напаўняльнікамі, арміраваная кардонам, тканінамі, метал. сеткамі) і асфальтавыя (асфальтавая масціка з напаўняльнікамі, выкарыстоўваецца для ізаляцыі праезнай часткі мастоў, падлогі ў міжпаверхавых перакрыццях і г.д.). Пашыраны пакрыцці з тэрмапластаў — палімерных плёнак (наносяць на трубы для іх гідраізаляцыі і інш.). Гідраізаляцыйныя матэрыялы выбіраюць з улікам геал. і гідрагеал. умоў, рэжыму падземных вод, важнасці збудаванняў і асаблівасці іх эксплуатацыі, ступені небяспекі ад уцечкі вадкасці з ёмістасці і інш.

А.Я.Вакар.

т. 5, с. 224

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛЮМІ́НІЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць алюміній, пераважна ў ступені акіслення + 3. Бясколерныя, белыя ці шэрыя цвёрдыя рэчывы. Найб. пашыраны алюмінію злучэнні з кіслародам (крышт. алюмінію аксід і аморфны алюмагель, гідраксід алюмінію), солі алюмінію з моцнымі кіслотамі (нітрат, сульфат, галагеніды, фасфаты), комплексныя солі алюмінію (алюмініевы галын, алюмасілікаты), солі алюмініевых кіслот (алюмінаты), алюмінійарган. злучэнні (гл. ў арт. Металаарганічныя злучэнні), нітрыд і гідрыд алюмінію, алюмінію злучэнні з некаторымі больш электрададатнымі, чым алюміній, металамі, напр. арсенід алюмінію.

Алюмінію гідраксід (Al(OH)3] сустракаецца ў прыродзе ў выглядзе мінералаў — састаўная частка баксітаў, існуе ў трох крышт. і аморфнай мадыфікацыях; не раствараецца ў вадзе, спіртах; амфатэрны, з кіслотамі ўтварае солі, са шчолачамі алюмінаты. Атрымліваюць гідролізам алюмасілікатаў у шчолачным асяроддзі, аморфны — асаджэннем з раствораў соляў алюмінію аміякам. Выкарыстоўваюць для вытв-сці аксіду алюмінію і алюмагелю, як адсарбцыйны сродак у медыцыне. Алюмінію сульфат [Al2(SO4)3], т-ра раскладання больш за 770 °C, раствараецца ў вадзе. Атрымліваецца ўзаемадзеяннем кааліну ці баксіту з сернай кіслатой. Выкарыстоўваюць у вытв-сці алюмініевага галыну, для праклейвання паперы, асвятлення і пазбаўлення колеру вады, як пратраву пры фарбаванні тканін. Алюмінію фтарыд (AlF3), т-ра ўзгонкі 1279 °C, раствараецца ў вадзе, утварае крышталегідраты. Кампанент электраліту ў вытв-сці алюмінію, таксама флюсаў, эмаляў, керамікі. Алюмінію хларыд (AlCl3), дыміць на паветры, т-ра ўзгонкі 180 °C, tпл 192,5 °C, у вадзе гідралізуецца. Атрымліваецца хларыраваннем кааліну, баксіту ці гліназёму. Каталізатар крэкінгу нафты, у рэакцыях алкіліравання. Алюмінію нітрыд (AlN), т-ра раскладання ~2000 °C, дыэлектрык, устойлівы да дзеяння кіслот і шчолачаў пры t 20 °C. Атрымліваюць узаемадзеяннем азоту з алюмініем пры t 1000 °C ці аднаўленнем аксіду алюмінію. Выкарыстоўваецца як вогнетрывалы матэрыял для тыгляў, футровак электролізных ваннаў, для нанясення каразійна- і зносаўстойлівых пакрыццяў на сталь, графіт і інш. Алюмінію гідрыд (AlH3), т-ра раскладання 105 °C, існуе ў палімерным стане. Выкарыстоўваецца як кампанент цвёрдага ракетнага паліва, аднаўляльнік у арган. Сінтэзе. Алюмінію арсенід (AlAs), т-ра плаўлення 1740 °C, кампанент паўправадніковых цвёрдых раствораў для лазераў, фотадыёдаў, сонечных батарэй.

Л.М.Скрыпнічэнка.

т. 1, с. 292

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БУРАКІ́

(Beta),

род адна-, двух- і шматгадовых травяністых раслін сям. лебядовых. 6 відаў (па іншых звестках 15). Пашыраны ў Зах. Еўропе, Міжземнамор’і, Зах. Азіі, Індыі, вырошчваюць таксама ў Паўн. і Паўд. Амерыцы, Паўн. Афрыцы, Аўстраліі. У культуры двухгадовыя віды: буракі лісцевыя, ці мангольд, і буракі звычайныя караняплодныя (В. vulgaris), да якіх належаць групы разнавіднасцей цукр., сталовых і кармавых буракоў. Пачалі спажываць карані буракоў у 3—1 ст. да н.э. У канцы 12 ст. з’явіліся ў культуры кармавыя формы, у 18—19 ст. — цукровыя. На Беларусі буракі ў культуры з 1830-х г.

У 1-ы год буракі ўтвараюць сакаўны мясісты караняплод з разеткай лісця, на 2-і даюць кветаносы і насенне. Сцябло травяністае, прамастойнае, галінастае, паяўляецца на 2-і год. Лісце буйное, гладкае або хвалістае, прыкаранёвае на доўгіх чаранках, сцябловае амаль сядзячае. Кветкі двухполыя, зялёныя ці белаватыя. Плады пры выспяванні зрастаюцца, утвараючы суплоддзі — клубочкі.

Сталовыя буракі (агароднінныя) культывуюцца ў 2 формах: сталовыя караняплодныя (больш пашыраныя) і бракі лісцевыя (мангольд). Караняплоды масай 0,4—0,9 кг, цёмна-чырвоныя, бардовыя, чырвона-фіялетавыя, багатыя цукрам (9—16%), бялком (1,8—3%), мінер. солямі, арган. к-тамі, клятчаткай, вітамінамі C, групы B, P, PP. Спажываюцца караняплоды і лісце вараныя, кансерваваныя, сушаныя. Лепшыя для іх глебы на Беларусі — акультураныя дзярнова-падзолістыя і тарфяна-балотныя. Раянаваныя сарты: Бардо 237, Холадаўстойлівыя 19, Пушкінскія К-18. Кармавыя буракі багатыя вугляводамі, мінер. солямі, вітамінамі. Караняплоды масай да 10—12 кг, жоўтыя, белыя, чырвоныя. Скормліваюцца ўсім відам жывёлы, пераважна малочным. Бацвінне ідзе на корм свежае і сіласаванае. Сеюць на акультураных тарфяніках, на сугліністых і супясчаных мінер. глебах з нейтральнай рэакцыяй глебавага раствору. Раянаваныя сарты: Бел. чырвоныя, Экендорфскія жоўтыя і інш. Цукровыя буракі — найважнейшая тэхн. культура — сыравіна для цукр. прам-сці. Маюць белыя караняплоды масай 400—500 г, багатыя цукрам (19—20%, макс. да 23%). Цепла- і святлолюбівыя, вельмі патрабавальныя да ўмоў жыўлення і вільгаці, асабліва ў перыяд фарміравання лісця і караняплода (ліп.жн.). Вырошчваюцца на добра ўгноеных сугліністых і супясчаных дзярнова-падзолістых глебах, на акультураных тарфяна-балотных. Бацвінне, жамерыны, патака ідуць на корм. Гл. таксама Буракаводства.

У.П.Пярэднеў.

т. 3, с. 343

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРО́НЗА

(франц. bronze),

1) у тэхніцы — сплаў на аснове медзі, у якім асн. дабаўкамі з’яўляюцца волава, алюміній, берылій, крэмній, свінец, хром і інш. элементы, за выключэннем цынку (яго сплаў з меддзю наз. латунь) і нікелю (медна-нікелевы сплаў). Адпаведна бронза называецца алавянай, алюмініевай і г.д. Бронза мае значную трываласць, пластычнасць, цвёрдасць, высокія антыкаразійныя і антыфрыкцыйныя ўласцівасці.

Алавяная бронза мае да 11% волава і невялікія дабаўкі цынку, свінцу, фосфару, нікелю. Вызначаецца малым каэф. трэння па сталі. З яе робяць рабочы слой падшыпнікаў слізгання і антыкаразійную арматуру. Алюмініевая бронза мае 11% алюмінію і дабаўкі жалеза, нікелю і марганцу, якія павялічваюць трываласць сплаву. Устойлівая да сернай і большасці арган. кіслот. З яе робяць стужкі, палосы на спружыны, пруткі, трубы і фасонныя адліўкі. Берыліевая бронза мае да 2,4% берылію. Ідзе на выраб мембран, спружын, кантактаў, шасцерняў. Крэмніевая бронза мае 1—3% крэмнію, а таксама нікель, цынк, свінец, марганец. Вызначаецца высокімі мех. характарыстыкамі, антыфрыкцыйнымі ўласцівасцямі, добра зварваецца, паяецца і апрацоўваецца рэзаннем. З яе робяць пруткі, стужкі, сеткі, рашоткі, электроды. Марганцавая бронза вызначаецца павышанай каразійнай устойлівасцю, гарачатрываласцю. Свінцовістая бронза можа мець да 60% свінцу. Ёю ўкрываюць (тонкім слоем) укладышы і ўтулкі, якія працуюць у рэжыме слізгання. Хромістая бронза вызначаецца высокай электра- і цеплаправоднасцю. Ідзе на выраб калектараў эл. рухавікоў, электродаў.

2) У мастацтве — адзін з найб. пашыраных матэрыялаў для дэкар.-прыкладных вырабаў і скульптуры. Ліццё з алавянай бронзы (сплаў медзі з волавам, часам з дадаткамі інш. металаў) дае магчымасць з макс. дакладнасцю ўзнаўляць найдрабнейшыя дэталі мадэлі. Добра паддаецца апрацоўцы (чаканцы, паліроўцы, таніроўцы). Матэрыял пластычна вельмі выразны, на паверхні скульптуры (манум., дэкар., станковай) стварае своеасаблівыя святлоценявыя эфекты. Пад дзеяннем атм. з’яў набывае спецыфічныя адценні (паціну).

Вырабы з бронзы вядомы ў мастацтве Месапатаміі (3-е тыс. да н.э.), Стараж. Егіпта (2-е тыс. да н.э.); час росквіту — эпоха італьян. Адраджэння. З 17 ст. маст. ліццё з бронзы пашырана ў Францыі. Вядомыя творы з бронзы ў бел. мастацтве: помнікі Я.Коласу (1972, скульпт. З.Азгур), Я.Купалу (1972, А.Анікейчык, Л.Гумілеўскі, А.Заспіцкі), М.Багдановічу (1981, С.Вакар) у Мінску, Ф.Скарыне (1974, А.Глебаў) у Полацку, С.Буднаму (1980, С.Гарбунова) у Нясвіжы і інш.

т. 3, с. 260

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПС

(ад грэч. gypsos мел, вапна),

1) мінерал класа сульфатаў, CaSO4·2H2O. У чыстым выглядзе мае 32,6% аксіду кальцыю CaO, 46,5% сернага ангідрыду SO3 і 20,9% вады H2O. Механічныя прымесі пераважна ў выглядзе гліністых і арган. рэчываў, сульфідаў і інш. Крышталізуецца ў манакліннай сінганіі. Крышталі таблітчастыя, радзей слупкаватыя або прызматычныя, часта ўтвараюць двайнікі («ластаўчын хвост»). Агрэгаты зярністыя, ліставатыя, парашкападобныя, канкрэцыі, валокны, іголкі, друзы. Афарбоўка ў залежнасці ад прымесей — ад бясколернай і белай да шэрай, жоўтай, чырвонай, ружовай, бурай і чорнай. Бляск шкляны. Цв. 1,5—2. Крохкі. Шчыльн. 2,3 г/см³. У вадзе прыкметна растваральны (20,5 г/л пры 20 °C). Па паходжанні хемагенны, радзей гідратэрмальны. Разнавіднасці: селеніт (валакністы гіпс), гіпсавы шпат (пласцінкавы гіпс) і інш. Выкарыстоўваецца ў цэментнай прам-сці, буд-ве, медыцыне, папяровай вытв-сці.

2) Асадкавая горная парода, якая складаецца пераважна з мінералу гіпсу і прымесей даламіту, ангідрыту, цэлесціну, гідраксідаў жалеза, серы, кальцыту і інш. Паводле ўмоў утварэння адрозніваюць радовішчы гіпсу пярвічныя, што ўтварыліся ў лагунах ці азёрах, і другасныя, што ўзніклі пры выветрыванні (гідратацыі ангідрытаў), радовішчы вышчалочвання («гіпсавы капялюш»), метасаматычныя і інш. Прамысл. значэнне маюць пярвічныя лагунныя радовішчы гіпсу. На Беларусі да такіх належыць Брынёўскае радовішча гіпсу.

Гіпс будаўнічы, алебастр, вяжучы матэрыял паветранага цвярдзення, 2CaSO4·H2O. Выкарыстоўваюць пераважна для ўнутр. апрацоўчых работ.

Гіпс у скульптуры і архітэктуры, адзін з гал. матэрыялаў скульптуры. Выкарыстоўваецца для стварэння рабочых мадэлей, якія потым павялічваюць да памераў скульптуры, а таксама для вырабу пустых формаў пры адліўцы копій, тоесных арыгіналаў, пераходных мадэлей скульптур для пераводу іх у іншыя матэрыялы, пры рэпрадуктаванні ўзораў сусв. скульптуры для музеяў, інтэр’ераў грамадскіх будынкаў. Вядомы з часоў Стараж. Егіпта, Грэцыі, Рыма.

На Беларусі як матэрыял станковай скульптуры пашырыўся ў 19 ст. У гіпсе выкананы барэльеф Т.Зана (Р.Слізень, 1-я пал. 19 ст.), «Алегорыя скульптуры» К.Ельскага (1858), бюст Т.Касцюшкі (Я.Астроўскі, 1860), партрэты М.Багдановіча (А.Грубэ, 1927) і інш.

Літ.:

Одноралов Н.В. Скульптура и скульптурные материалы. 2 изд. М., 1982.

У.Я.Бардон, І.М.Каранеўская (у скульптуры і архітэктуры).

т. 5, с. 259

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)