АРХІМЕ́Д (Archimēdēs; каля 287, Сіракузы — 212 да н.э.), старажытнагрэчаскі вучоны; адзін з заснавальнікаў матэматыкі і механікі. Распрацаваў матэм. метады вызначэння плошчаў паверхняў і аб’ёмаў розных фігур і целаў, на аснове якіх створаны дыферэнцыяльнае і інтэгральнае злічэнні. Вызначыў суму бесканечнай геам. прагрэсіі з назоўнікам ¼ (першы прыклад бесканечнага шэрагу ў матэматыцы); даследаваў уласцівасці архімедавай спіралі, стварыў тэорыю паўправільных выпуклых мнагаграннікаў (целы Архімеда); пабудаваў злічэнне, якое дазваляла запісваць і называць даволі вял. лікі; з вял. дакладнасцю вызначыў лік π і межы яго памылкі: 3 10 71 < π < 3 1 7 ; даў вызначэнне цэнтра цяжару цела; сфармуляваў Архімеда аксіёму. Архімед заклаў асновы гідрастатыкі і сфармуляваў яе асн. палажэнні (гл. Архімеда закон). Вынайшаў сістэму рычагоў, блокаў, паліспастаў і вінтоў для падымання цяжкіх прадметаў, машыну для абваднення палёў (архімедаў вінт), ваенную кідальную машыну, прыладу для вызначэння бачнага (вуглавога) дыяметра Сонца, мех. мадэль нябеснай сферы, якая дазваляла назіраць рух планет, фазы Месяца, зацьменні Сонца і Месяца, і інш. Архімед быў блізкі да сіракузскага цара Гіерона II, у час вайны супраць Рыма кіраваў абаронай Сіракузаў і быў забіты рымлянамі.

Літ.:

Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX в.). М., 1989.

т. 1, с. 525

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТРАПАСАЦЫЯГЕНЕ́З,

інтэгральнае паняцце, выпрацаванае тэарэтычным навук. мысленнем для цэласнага разумення чалавека ў яго гіст. і індывід, развіцці. Дае магчымасць: пазбегнуць аднабаковых тлумачэнняў паходжання чалавека (з пазіцый антрапа- і сацыягенезу, біялагізатарства, расізму, нацыяналізму); разглядаць пачатак чалавечай гісторыі ў дынаміцы эвалюцыйна-біял. перадумоў і матэрыяльна-дзейнасных фактараў гамінізацыі; зразумець прыроду як «неарганічнае цела» чалавека, што фарміруецца ў гіст. працэсе грамадства.

Выкарыстанне прынцыпу гістарызму да антрапалагічных праблем дае магчымасць раскрыць сац. сутнасць матэрыяльнага (фізічнага, біялагічнага) цела чалавека на ўзроўні яго філа- і антагенезу. Вял. мозг, рукі, здольнасць прама хадзіць, мысліць, гаварыць і інш. ўласцівыя чалавеку рысы — усё гэта жывая матэрыя, прырода. У той жа час гэта прырода чалавека фарміруецца самім соцыумам у працэсе яго гіст. развіцця. Дзіця пры нараджэнні атрымлівае ў спадчыну матэрыяльныя формы і задаткі чалавека, але самі па сабе яны яшчэ не робяць яго чалавекам. Ці стане мысліць і гаварыць дзіця, аб чым яно будзе мысліць і на якой мове размаўляць — усё залежыць ад сац. умоў жыцця. Антрапасацыягенез мае на мэце і даследаванне перспектыў змены матэрыяльных формаў і патэнцый чалавека ў працэсе натуральна-гіст. развіцця соцыуму, яго дэфармацыі і дэградацыі.

Літ.:

Ефимов Ю.И. Философские проблемы теории антропосоциогенеза. Л., 1981;

Проблемы современной антропологии. Мн., 1983;

Поршнев Б.Ф. О начале человеческой истории. М., 1974.

А.І.Пятрушчык.

т. 1, с. 392

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

rachunek, ~ku

rachun|ek

м.

1. рахунак;

~ek bieżący — бягучы рахунак;

~ek otwarty — адкрыты рахунак;

~ek rozliczeniowo-oszczędnościowy — разлікова-ашчадны рахунак;

~ek sprzedaży — рахунак рэалізацыі;

otworzyć (zamknąć) ~ek — адкрыць (закрыць) рахунак;

2. кошт;

na własny ~ek — на свой кошт;

3. мат. вылічэнне;

~ek całkowy — інтэгральнае вылічэнне;

~ek różniczkowy — дыферэнцыяльнае вылічэнне

Польска-беларускі слоўнік (Я. Волкава, В. Авілава, 2004, правапіс да 2008 г.)

ЗЛІЧЭ́ННЕ,

сістэма правіл аперыравання са знакамі пэўнага віду, якая дазваляе даць дакладнае апісанне некаторага класа задач і алгарытмы іх рашэння; спосаб утварэння якой-н. сукупнасці (мноства) элементаў на аснове правіл атрымання новых элементаў з зададзеных зыходных. Мае фундаментальны характар, як і паняцце алгарытму. Узнікла і развівалася ў рамках матэматыкі (гл. Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Дыферэнцыяльнае злічэнне, Інтэгральнае злічэнне). Пазней метады пабудовы З. пачалі выкарыстоўвацца ў логіцы (гл. Алгебра логікі, Матэматычная лінгвістыка). Агульная тэорыя З. выкарыстоўваецца ў алгарытмаў тэорыі.

У матэматычнай логіцы любое З. адназначна задаецца зыходнымі элементамі (алфавітам З.), правіламі ўтварэння формул дадзенага З. (слоў ці выразаў), сукупнасцю аксіём і правіл пераўтварэння (вывядзення) яго фразеалогіі. Прыпісванне элементам З. пэўных значэнняў (гл. Семантыка лагічная) пераўтварае З. ў фармалізаваную мову. Напр., у З. выказванняў шляхам пэўнай канечнай працэдуры (доказу; улічваецца толькі праўдзівасць ці непраўдзівасць выказвання) атрымліваюць выказванні-тэарэмы (гл. Логіка выказванняў). У выніку атрымліваюць лагічную сістэму, якая фармалізуе разважанне, заснаванае на структуры складаных выказванняў у адрозненне ад унутранай структуры элементарных выказванняў. Пры З. прэдыкатаў атрымліваюць сцвярджэнні (формулы, тэарэмы) з улікам суб’ектна-прэдыкатыўнай структуры выказванняў (напр., «элемент X мае ўласцівасць P), што дае магчымасць выяўляць сувязь аб’ектаў з іх уласцівасцямі і суадносіны паміж імі, колькасна характарызаваць сувязь рэчаў, уласцівасцей і адносін з дапамогай лагічных эквівалентаў выразаў «усе», «некаторыя», «кожны» і інш. (гл. Квантары). Такое З. адпавядае логіцы прэдыкатаў, калі яно мае ўласцівасці несупярэчлівасці (кожная тэарэма агульназначная) і паўнаты (кожная агульназначная формула даказальная). З. прэдыкатаў уключае З. выказванняў і разглядаецца звычайна як яго пашырэнне шляхам фармалізацыі вывадаў, заснаваных на ўнутранай структуры выказванняў. Тэорыю З. прэдыкатаў распрацаваў ням. логік, матэматык і філосаф Г.Фрэге, чым істотна ўзбагаціў сілагістыку Арыстоцеля і традыц. сілагістыку. Абагульненне З. выказванняў — З. класаў, дзе дадаткова разглядаецца суб’ектна-прэдыкатная структура выказванняў і пры гэтым з кожным прэдыкатам (уласцівасцю) звязваецца ўся сукупнасць элементаў (клас) з разгляданай вобласці, якія маюць гэтую ўласцівасць (гл. Логіка класаў). З. класаў часам разглядаюць як фармалізаваную тэорыю мностваў, выкарыстоўваюць як дапаможны этап пры пераходзе ад З. выказванняў да З. прэдыкатаў і будуюць на базе З. выказванняў з дапамогай адпаведнай інтэрпрэтацыі яго формул.

Літ.:

Гильберт Д., Аккерман В. Основы теоретической логики: Пер. с нем. М., 1947;

Методологические проблемы развития и применения математики. М., 1985;

Жуков Н.И. Философские основания математики. 2 изд. Мн., 1990.

С.Ф.Дубянецкі.

т. 7, с. 76

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕ́ТРЫЯ

(ад геа... + ...метрыя),

раздзел матэматыкі, які вывучае прасторавыя дачыненні і формы цел, а таксама інш. дачыненні і формы, падобныя да прасторавых паводле сваёй структуры. Узнікла з практычных патрэб чалавека для вызначэння адлегласці, вуглоў, плошчаў, аб’ёмаў і інш. Без геаметрыі немагчыма развіццё астраноміі, геадэзіі, картаграфіі, крышталяграфіі, адноснасці тэорыі і ўсіх графічных метадаў. Геам. тэорыі выкарыстоўваюцца ў механіцы і фізіцы: магчымыя канфігурацыі (узаемнае размяшчэнне элементаў) мех. сістэмы ўтвараюць «канфігурацыйную прастору» (рух сістэмы адлюстроўваецца рухам пункта ў гэтай прасторы); сукупнасць станаў фіз. сістэмы разглядаецца як «фазавая прастора» сістэмы і інш.

Асн. паняцці геаметрыі (лінія, паверхня, пункт, цела геаметрычнае) узніклі ў выніку абстрагавання ад інш. уласцівасцей цел (напр., масы, колеру). Параўнанне цел абумовіла ўзнікненне паняццяў даўжыні, плошчы, аб’ёму, меры вугла. Самыя простыя геам. звесткі і паняцці былі вядомы ў стараж. Егіпце, Вавілоне, Кітаі, Індыі; геам. палажэнні фармуляваліся ў выглядзе правіл з элементарнымі доказамі або без доказаў. Самастойнай навукай геаметрыя стала ў Стараж. Грэцыі (5 ст. да н.э.); геаметрыя ў аб’ёме, які прыкладна адпавядае сучаснаму курсу элементарнай геаметрыі, выкладзена ў «Пачатках» Эўкліда (3 ст. да н.э.). Развіццё астраноміі і геадэзіі прывяло да стварэння плоскай (гл. Трыганаметрыя) і сферычнай трыганаметрыі (1—2 ст. да н.э.). Інтэнсіўнае развіццё геаметрыі пачынаецца з 17 ст.: Р.Дэкарт прапанаваў метад каардынат; І.Ньютан і Г.Лейбніц стварылі дыферэнцыяльнае і інтэгральнае злічэнне, што дало магчымасць вывучаць геам. аб’екты метадамі алгебры і аналізу бясконца малых (гл. Алгебраічная геаметрыя, Аналітычная геаметрыя, Дыферэнцыяльная геаметрыя); Ж.Дэзарг і Б.Паскаль заклалі асновы праектыўнай геаметрыі. У працах Г.Монжа (18 ст.) сучасны выгляд набыла нарысоўная геаметрыя. У 1826 М.А.Лабачэўскі пабудаваў геаметрыю на аснове сістэмы аксіём, якія адрозніваюцца ад эўклідавай толькі аксіёмай аб паралельных прамых (гл. Лабачэўскага геаметрыя). Стала магчымым будаванне разнастайных прастораў з рознымі геаметрыямі (гл., напр., Неэўклідавы геаметрыі), сістэматызацыя якіх магчыма з дапамогай груп тэорыі. Пасля гэтага павялічылася роля і пашырылася выкарыстанне аксіяматычнага метаду. У 1872 Ф.Клейн сфармуляваў новае тлумачэнне геаметрыі як навукі аб уласцівасцях, інварыянтных адносна зададзенай групы пераўтварэнняў. Паралельна развіваўся логікавы аналіз асноў геаметрыі, высвятляліся пытанні несупярэчлівасці, мінімальнасці і паўнаты сістэмы аксіём. Вынікі гэтых работ падвёў Д.Гільберт у кн. «Асновы геаметрыі» (1899). У працах сав. матэматыкаў П.С.Аляксандрава, Л.С.Пантрагіна, П.С.Урысона развіваліся асн. кірункі тапалогіі. Кірунак «Геаметрыя ў цэлым» заснавалі сав. матэматыкі А.Д.Аляксандраў, М.У.Яфімаў, А.Б.Пагарэлаў.

На Беларусі станаўленне геаметрыі пачалося ў 1930-я г. Атрыманы важныя вынікі ў праблеме ўкладання рыманавых прастораў у эўтслідавы і рыманавы прасторы (Ц.Л.Бурстын); метадамі вонкавых форм даследаваны лініі і паверхні Картана ў неэўклідавых прасторах (Л.К.Тутаеў); адкрыты клас аднародных прастораў і распрацавана іх тэорыя (В.І.Вядзернікаў, А.С.Фядзенка, Б.П.Камракоў).

Літ.:

Александров А.Д., Нецветаев Н.Ю. Геометрия. М., 1990;

Алгебра и аналитическая геометрия. Ч. 1. Мн., 1984;

Дифференциальная геометрия. Мн., 1982;

Феденко А.С. Пространства с симметриями. Мн., 1977.

А.А.Гусак.

т. 5, с. 121

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)