пункт, ‑а, М ‑кце, м.

1. Пэўнае месца ў прасторы або на паверхні чаго‑н.; кропка. Сымон нічога не бачыць навокал сябе, вочы яго блішчаць, пазіраюць у адзін пункт. Колас. Апошнім пунктам у Еўропе, дзе мы спыніліся, быў Капенгаген, сталіца Даніі. Новікаў. За невялічкай вёскай каля выгану быў самы высокі пункт ваколіцы. Бядуля.

2. Месца, памяшканне, прыстасаванне і прызначанае для якіх‑н. мэт. Камандны пункт. Назіральны пункт. Зборны пункт. Перасыльны пункт. Дыспетчарскі пункт. Прызыўны пункт.

3. Асобны раздзел, параграф афіцыйнага дакумента або якога‑н. іншага тэксту, які абазначаецца лічбай або літарай. Пункт першы. Пункт «а». □ [Сакратар абкома:] — У вашых мерапрыемствах ёсць пункт аб разгортванні сацыялістычнага спаборніцтва. Сіўцоў. // Пытанне, тэма, прадмет, пэўнае месца (думак, меркаванняў і г. д.). І калі мацерыны разважанні даходзілі да гэтага пункта, яна гатова была.. разарваць Маню на кавалкі... Васілевіч.

4. Асобны момант, перыяд у развіцці чаго‑н. Калі ўжо ўсе гэтыя справы.. дайшлі да кульмінацыйнага пункта і, можна сказаць, катастрафічнага завяршэння, .. [Тварыцкі] сам вельмі выразна сфармуляваў свае адчуванні і сваю свядомасць таго, што Слава радасная і не ведае пакутнага жыцця. Чорны. Ульянін прыход на Гармізаў хутар быў паваротным пунктам у Арыніным жыцці. Колас.

5. Адно з асноўных паняццяў матэматыкі, механікі, фізікі: месца, якое не мае вымярэнняў, не падлягае вызначэнню. Пункт перасячэння прамых. Пункт апоры. Пункт сонцастаяння.

6. Тэмпературная мяжа, пры якой рэчыва змяняе свой агрэгатны стан. Пункт замярзання. Пункт кіпення. Пункт плаўлення.

7. Адзінка вымярэння друкарскіх літар і прабельнага матэрыялу.

•••

Мёртвы пункт (спец.) — стан звёнаў механізма, калі яны знаходзяцца ў імгненнай раўнавазе.

Населены пункт — горад, пасёлак, вёска і пад., дзе жывуць людзі.

З пункту гледжання (погляду) якога або каго — у пэўных адносінах, разглядаючы што‑н. з таго або іншага боку.

Пункт погляду (гледжання) — пэўны погляд на рэчы, пэўныя адносіны да чаго‑н.

[Ням. Punkt.]

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

ГІДРААЭРАМЕХА́НІКА

(ад гідра... + аэрамеханіка),

раздзел механікі, які вывучае законы руху і раўнавагі вадкасцей і газаў, а таксама іх узаемадзеянне паміж сабой і з межавымі паверхнямі цвёрдых цел. Вадкасці і газы разглядаюцца як суцэльнае асяроддзе (без уліку малекулярнай будовы). Падзяляецца на тэарэт. і эксперыментальную; уключае гідрамеханіку, аэрамеханіку, газавую дынаміку, пытанні абгрунтавання эксперыментаў і выкарыстання іх вынікаў разглядаюцца ў падобнасці тэорыі і ў мадэліраванні. Вынікі даследаванняў па гідрааэрамеханіцы выкарыстоўваюцца ў ракетна-касм., авіяц. і інш. тэхніцы, пры буд-ве суднаў, турбін, гідратэхн. збудаванняў і інш.

Станаўленне гідрааэрамеханікі як навукі звязана з працамі Л.Эйлера (атрымаў ураўненні руху ідэальнай вадкасці і неразрыўнасці ўраўненне) і Д.Бернулі (устанавіў суадносіны паміж ціскам вадкасці і яе кінетычнай энергіяй; гл. Бернулі ўраўненне). У работах Ж.Лагранжа, А.Кашы, Т.Кірхгофа, Т.Гельмгольца, Дж.Стокса, М.Я.Жукоўскага, С.А.Чаплыгіна і інш. распрацаваны аналітычныя метады даследаванняў безвіхравых і віхравых цячэнняў ідэальнай вадкасці, руху цел у вадкасцях і газах і інш. Асн. дасягненне гідрааэрамеханікі 19 ст. — пераход да даследаванняў руху рэальнай (вязкай) вадкасці, які падпарадкоўваецца ўраўненням Наўе—Стокса; ням. вучоны Л.Прандтль распрацаваў тэорыю пагранічнага слоя (1904). Тэарэт. метады гідрааэрамеханікі грунтуюцца на дакладных (ці набліжаных) ураўненнях, што апісваюць цячэнне вадкасці (газу); выкарыстанне ЭВМ дазваляе рашаць складаныя сістэмы ўраўненняў з улікам многіх фактараў.

На Беларусі праблемы гідрааэрамеханікі распрацоўваюць у Ін-це цепла- і масаабмену, Ін-це фізікі АН Беларусі, БДУ, Бел. політэхн. акадэміі.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. 4 изд. М., 1988;

Прандтль Л. Гидроаэромеханика: Пер. с нем. М., 1949;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

Б.А.Калавандзін, В.А.Сасіновіч.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАПАЎНЯ́ЛЬНАСЦІ ПРЫ́НЦЫП,

метадалагічны прынцып, прапанаваны Н.Борам (1927) у сувязі з неабходнасцю стварэння лагічна несупярэчлівай фіз. інтэрпрэтацыі квантавай механікі; метадалагічнае абагульненне неазначальнасцей суадносін.

Мікраскапічныя аб’екты (электроны, фатоны і інш.) у розных эксперым. умовах могуць паводзіць сябе як строга лакалізаваныя часціцы ці як хвалі. Аднак уяўленне пра суіснаваине карпускулярных і хвалевых уласцівасцей у адным і тым жа аб’екце звязана з неабходнасцю аб’яднання несумяшчальных паняццяў (напр., паняцце даўжыні хвалі ў пэўным пункце прасторы не мае сэнсу). У адпаведнасці з Д.п. пры тэарэт. апісанні мікраскапічных з’яў неабходна ўжываць 2 сістэмы макраскапічных паняццяў, бо выкарыстанне адной з іх выключае магчымасць адначасовага выкарыстання другой; абедзве ж яны аднолькава неабходныя для поўнага апісання квантава-мех. сістэм і з’яўляюцца нібыта ўзаемна дапаўняльнымі бакамі такога апісання. Бор прадэманстраваў таксама справядлівасць Д.п. ў дачыненні да апісання біял., псіхал. і сац. з’яў. З дапамогай Д.п. ўстанаўліваецца эквівалентнасць (раўназначнасць) паміж двума класамі паняццяў, што апісваюць супярэчлівыя сітуацыі ў розных сферах пазнання. У вузкім сэнсе Д.п. супадае з прынцыпам ням. фізіка В.Гайзенберга, які адзначаў, што пры пэўнасці каардынаты мікрачасціцы мае месца нявызначанасць імпульсу і наадварот. Часам Д.п. ацэньваецца як метадалогія, толькі знешне падобная на дыялектычную, або наогул як метафізічны падыход (мех. злучэнне процілегласцей). Фізікі капенгагенскай школы (П.Іордан, Дж.Франк) лічылі Д.п. чыста суб’ектыўным, цалкам абумоўленым слабасцямі пазнання, звязанымі з адсутнасцю спец. сродкаў адлюстравання цэласнасцей, вымушанасцю пазнання па частках.

Літ.:

Крымский С.Б., Кузнецов В.И. Мировоззренческие категории в современном естествознании. Киев, 1983;

Дополнительность и методология научного познания // Нильс Бор и наука XX в.: Сб. науч. тр. Киев, 1988;

Мировоззренческие структуры в научном познании. Мн., 1993.

Л.М.Тамільчык, А.В.Ягораў.

т. 6, с. 50

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b вектараў a і b — вектар, праведзены з пачатку a да канца b, калі канец a і пачатак b супадаюць. Складанне вектараў мае ўласцівасці: a + b = b + a ; ( a + b ) + c = a + ( b + c ) ; a + 0 = a ; a + (−a) = 0 ; дзе 0 — нулявы вектар, a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць ab вектараў a і b — вектар x такі, што x + b = a ; рознасць ab ёсць вектар, які злучае канец вектара b з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α a | і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a=0, то α a = 0. Уласцівасці множання вектара на лік: α ( a + b )) = αa + αb ; ( a + b )) α = a α + b α ; α ( β a ) = ( α β ) a ; 1 a = a . Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯФІ́ЗІКА

(ад бія... + фізіка),

біялагічная фізіка, навука пра фіз.-хім. асновы і заканамернасці жыццядзейнасці, а таксама ультраструктуры біял. сістэм на ўсіх узроўнях арганізацыі ад субмалекулярнага да клеткі і цэлага арганізма. Падзяляецца на квантавую, малекулярную, мембранную, клетачную, біяфізіку кіравання і рэгуляцыі, біяфізіку складаных сістэм. Вылучаюць таксама біяфізіку рухомасці, узбуджальнасці, рэцэпцыі, біяэнергет., трансп. працэсаў і інш.

Біяфізіка як навука сфарміравалася ў сярэдзіне 20 ст. Першыя даследаванні біяфіз. характару вядомы з 17 ст. (працы франц. вучонага Дэкарта па вывучэнні органаў пачуццяў). У 1791 адкрыта жывёльная электрычнасць (італьян. вучоны Л.Гальвані). У 2-й пал. 19 ст. ням. вучоныя Г.Гельмгольц і В.Вунт паклалі пачатак фізіял. акустыцы і оптыцы. У Расіі развіццю біяфіз. даследаванняў спрыялі працы І.М.Сечанава (біямеханіка рухаў, канец 19 ст.), П.П.Лазарава (іонная тэорыя ўзбуджэння, 1916), Г.М.Франка і С.Ф.Радыёнава (фіз. метад выяўлення звышслабага свячэння біяаб’екта, 1950-я г.). У 1953 англ. Вучоныя Дж.Кендру і М.Перуц адкрылі структуру міяглабіну і гемаглабіну.

Станаўленне біяфізікі на Беларусі пачалося з даследаванняў М.М.Гайдукова і Ц.М.Годнева па фотасінтэзе (1924—27). Навукова-даследчыя работы па малекулярнай і мембраннай біяфізіцы вядуцца ў ін-тах АН Беларусі (фотабіялогіі, біяарган. хіміі, біяхіміі, фізікі), БДУ, Гродзенскім і Віцебскім мед. ін-тах. Высветлены прырода і інфарм. магчымасць УФ-флюарэсцэнцыі бялкоў (С.В.Конеў, Я.А.Чарніцкі), рэгуляцыя фотасінтэзу пры адаптацыі праз змяненне структурна-функцыян. стану хларапластаў (В.М.Іванчанка), раскрыты асаблівасці фатонікі малекулы хларафілу (Г.П.Гурыновіч, К.М.Салаўёў), залежнасці радыеадчувальнасці дэзоксірыбануклеапратэідаў ад колькасці міжмалекулярных кантактаў (А.М.Пісарэўскі, В.Т.Андрыянаў, С.М.Чаранкевіч), адкрыты новыя рэгулятарныя механізмы ў палачцы сятчаткі вока (І.Дз.Валатоўскі). Праведзены даследаванні па матэм. разліку канфармацыі поліпептыдаў і бялкоў (С.Г.Галакціёнаў), мембранна-структурным кантролі праліферацыі мікробных клетак (У.М.Мажуль), кааператыўных эфектах у пратэаліпасомах (П.А.Кісялёў), электрафізіялогіі расліннай клеткі (У.М.Юрын), структурнай і рэцэпторнай рэарганізацыі мембранаў мозга пры старэнні (С.Л.Аксёнцаў і А.А.Мілюцін).

Літ.:

Конев С.В., Волотовский И.Д. Фотобиология. 2 изд. Мн., 1979;

Биофизика. М., 1983;

Рубин А.Б. Биофизика. Кн. 1—2. М., 1987;

Волькенштейн М.В. Общая биофизика. М., 1978.

С.В.Конеў.

т. 3, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКУ́СТЫКА

(ад грэч. akustikos слыхавы),

раздзел фізікі, які вывучае пругкія ваганні і хвалі ад самых нізкіх частот (умоўна ад 0 Гц) да самых высокіх (10​12—10​13 Гц), іх узаемадзеянне з рэчывам і выкарыстанне.

Першыя звесткі аб акустыцы — у Піфагора (6 ст. да н.э.). Развіццё акустыкі звязана з імёнамі Арыстоцеля, Г.Галілея, І.Ньютана, Г.Гельмгольца. Вынікі класічнай акустыкі падагульніў Дж.Рэлей. Значны ўклад у развіццё акустыкі зрабілі М.М.Андрэеў, А.А.Харкевіч, Л.М.Брэхаўскіх, Л.І.Мандэльштам, М.А.Леантовіч і інш. Новы этап развіцця акустыкі ў 20 ст. звязаны з развіццём электра- і радыётэхнікі, электронікі.

Агульная акустыка на аснове лінейных дыферэнцыяльных ураўненняў вывучае заканамернасці адбіцця і пераламлення акустычных хваляў на паверхні, распаўсюджванне, інтэрферэнцыю і дыфракцыю іх у суцэльных асяроддзях, ваганні ў сістэмах з засяроджанымі параметрамі. Акустыка рухомых асяроддзяў і статыстычная разглядаюць уплыў руху і нерэгулярнасцяў асяроддзя на распаўсюджванне, выпрамяненне і прыём гукавых хваляў. Фізічная акустыка вывучае залежнасць характарыстык хваляў ад уласцівасцей і стану асяроддзя; яе падраздзелы: малекулярная акустыка (паглынанне і дысперсія гуку), квантавая акустыка (разглядае пругкія хвалі як фаноны, пры нізкіх т-рах, ва ультра- і гіпергукавым дыяпазонах). Псіхафізіялагічная акустыка вывучае ўздзеянне гуку на чалавека. Асн. задача электраакустыкі (магнітаакустыкі) — распрацоўка гучнагаварыцеляў, мікрафонаў, тэлефонаў і інш. выпрамяняльнікаў і прыёмнікаў гуку. Гідраакустыка і атмасферная акустыка — выкарыстанне гуку для падводнай лакацыі, сувязі, зандзіравання атмасферы і інш. Задачы архітэктурнай і будаўнічай акустыкі — паляпшэнне распаўсюджвання і ўспрымання мовы і музычных гукаў у памяшканнях, памяншэнне шуму (гл. Акустыка архітэктурная, Акустыка музычная). Нелінейная акустыка, акустаоптыка і акустаэлектроніка вывучаюць узаемадзеянне акустычных хваляў з фіз. палямі і часціцамі. Новыя магчымасці візуалізацыі гукавых палёў дала акустычная галаграфія. На Беларусі даследаванні па акустыцы праводзяцца з 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН. Найб. значныя вынікі атрыманы Ф.І.Фёдаравым у тэорыі пругкіх хваляў у крышталях.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М., 1953;

Стретт Дж.В. (лорд Рэлей). Теория звука: Пер. с англ. Т. 1—2. 2 изд. М., 1955;

Скучик Е. Основы акустики: Пер. с нем. Т. 1—2. М., 1958—59;

Фёдоров Ф.И. Теория упругих волн в кристаллах. М., 1965;

Красильников В.А., Крылов В.В. Введение в физическую акустику. М., 1984.

А.Р.Хаткевіч.

т. 1, с. 218

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАФІ́ЗІКА

(ад геа... + фізіка),

навука аб фіз. палях Зямлі, фіз. уласцівасцях і будове рэчыва Зямлі і працэсах ва ўсіх геасферах. У вузкім сэнсе геафізіка — навука аб фіз. з’явах у цвёрдых сферах: зямной кары, мантыі Зямлі, ядры Зямлі. Фіз. працэсы ў гідрасферы вывучае гідрафізіка, у атмасферы — фізіка атмасферы.

Элементы натуральнай геафізікі вядомы з прац антычных вучоных. У 17—19 ст. адкрыты асн. законы макраскапічнай фізікі, створаны першыя геафізічныя абсерваторыі. Як комплексная навука геафізіка аформілася ў сярэдзіне 19 ст., у сучасным разуменні — з 1960-х г. Асновы тэорыі і прыкладной геафізікі распрацавалі Д.Ф.Араго, (Францыя), Б.Гутэнберг (ЗША), Х.Джэфрыс (Вялікабрытанія), рус. і сав. вучоныя А.Дз.Архангельскі, Р.А.Гамбурцаў, М.С.Маладзенскі, А.М.Ціханаў, П.П.Лазараў, А.І.Забароўскі, У.У.Фядынскі, Э.Э.Фатыяды і інш. Геафізіка падзяляецца на фізіку Зямлі і пошукава-разведвальную геафізіку (гл. Геафізічная разведка). Фізіка Зямлі — тэарэт. навука, якая фіз. метадамі даследуе глыбінную будову і глыбінныя працэсы Зямлі. У ёй вылучаюцца буйныя раздзелы: геадынаміка, геатэрмія, гравіметрыя, сейсмалогія, геамагнетызм (гл. Зямны магнетызм), геаэлектрыка, даследаванні мінералаў і горных парод пры высокіх ціску і т-рах. Пошукава-разведвальная геафізіка — прыкладная навука, якая фіз. і матэм. метадамі даследуе будову верхняй часткі зямной кары з мэтай пошукаў і разведкі радовішчаў карысных выкапняў, для вырашэння задач гідрагеалогіі і інж. геалогіі. У ёй вылучаюцца структурная (пошукі нафтавых і газавых радовішчаў), рудная (радовішчаў руд і рудных вузлоў) і прамысл. геафізіка (даследаванні геал. разрэзу свідравін). У 1970-я г. вылучылася вылічальная геафізіка, мэта якой — назапашванне, захоўванне і аналіз інфармацыі з шырокім выкарыстаннем ЭВМ. Геафізіка цесна звязана з фіз.-матэм., тэхн. (аўтаматыка, электроніка, кібернетыка, касманаўтыка) і геал. навукамі (геалогія, геахімія, планеталогія, тэктоніка і інш).

На Беларусі геафізіка развіваецца з 1930-х г., калі пачалі праводзіць гравіметрычную і магнітную здымку. З 1950-х г. вядзецца планамернае геафіз. вывучэнне тэр. краіны. Даследаванні праводзяць з 1957 у Геолагаразведачным навукова-даследчым інстытуце, з 1960 у Плешчаніцкай геафізічнай абсерваторыі, з 1971 у Інстытуце геалагічных навук Нац. АН Беларусі, Геафізічнай экспедыцыі і інш. падраздзяленнях ВА «Беларусьгеалогія», а таксама ў Гомельскім дзярж. ун-це і БДУ.

Г.І.Каратаеў.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКСІЯМАТЫ́ЧНЫ МЕ́ТАД,

спосаб пабудовы навук. тэорыі ў выглядзе сістэмы пастулатаў (аксіём) і правіл вываду (аксіяматыкі), што дае магчымасць логікавымі разважаннямі атрымліваць сцвярджэнні (тэарэмы) дадзенай тэорыі.

Узнік у работах стараж.-грэч. матэматыкаў. Напр., у «Асновах» Эўкліда праведзена ідэя атрымання асн. зместу геаметрыі з невялікай колькасці аксіём, праўдзівасць якіх лічыцца відавочнай. Адкрыццё ў 19 ст. неэўклідавых геаметрый стымулявала ўзнікненне праблем больш агульнага характару (напр., несупярэчлівасці, паўнаты і незалежнасці той ці інш. сістэмы аксіём). Гэта адкрыла шлях да фармалізаванага развіцця тэорый: пошуку інш. сістэм паняццяў (тэорый, галін ведаў), якія падпарадкоўваюцца тым жа аксіёмам, выяўлення новых інтэрпрэтацый пэўнай сістэмы аксіём, што дало магчымасць адкрываць новыя навук. факты. Д.Гільберт і яго школа спадзяваліся на аснове аксіяматычнага метаду вырашыць гал. пытанні абгрунтавання матэматыкі. Аднак вынікі аўстр. і амер. матэматыка і логіка К.Гёдэля (1931) выявілі неажыццявімасць гэтай праграмы, напр. тэарэма аб непаўнаце арыфметыкі сведчыць аб абмежаванасці аксіяматычнага метаду. У 20 ст. дзякуючы развіццю матэматычнай логікі стала магчымым аксіяматызаваць тыя сродкі логікі, з дапамогай якіх выводзяцца адны сцвярджэнні аксіяматычнай тэорыі з інш. яе сцвярджэнняў, што мае істотнае значэнне для аўтаматызацыі разумовай працы.

Сучасныя навук. тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, наз. дэдуктыўнымі. Усе паняцці такіх тэорый (акрамя фіксаванай колькасці першапачатковых) уводзяцца пры дапамозе вызначэнняў, якія выражаюць іх змест праз першапач. паняцці. У той ці інш. меры дэдуктыўныя доказы, характэрныя для аксіяматычнага метаду, выкарыстоўваюцца ў многіх навуках, найб. у матэматыцы, логіцы, некаторых раздзелах фізікі, біялогіі і інш. Тэорыі, пабудаваныя пры дапамозе аксіяматычнага метаду, нярэдка маюць выгляд фармалізаваных сістэм, якія даюць дакладнае апісанне лагічных сродкаў вываду тэарэм з аксіём. Доказ такой тэорыі ўяўляе сабой паслядоўнасць формул, кожная з якіх з’яўляецца аксіёмай або атрымліваецца з папярэдніх формул па адным з прынятых правіл вываду. У адрозненне ад такіх фармальных доказаў уласцівасці самой фармальнай сістэмы ў цэлым вывучаюцца змястоўнымі сродкамі метатэорыі. Асн. патрабаванні да аксіяматычных фармальных сістэм: несупярэчлівасць, паўната, незалежнасць аксіём. Аксіяматычны метад — адзін з метадаў пабудовы навук. ведаў, які мае абмежаванае выкарыстанне, бо патрабуе высокага ўзроўню развіцця навук. тэорыі. Нават некаторыя дастаткова багатыя навук. тэорыі (напр., арыфметыка натуральных лікаў) не дапускаюць поўнай аксіяматызацыі. Гэта сведчыць аб немагчымасці поўнай фармалізацыі навук. ведаў.

Літ.:

Садовский В.Н. Аксиоматический метод построения научного знания // Философские вопросы современной формальной логики. М., 1962;

Столл Р. Множества. Логика: Аксиоматич. теории.: Пер. с англ. М., 1968;

Новиков П.С. Элементы математической логики. 2 изд. М., 1973.

Р.Т.Вальвачоў, У.К.Лукашэвіч.

т. 1, с. 207

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)