ГЕЛІЯТЭ́ХНІКА

(ад гелія... + тэхніка),

галіна тэхнікі, якая займаецца распрацоўкай тэарэт. асноў, практычных метадаў і тэхн. сродкаў пераўтварэння энергіі сонечнай радыяцыі ў інш. віды энергіі. Выкарыстоўвае розныя спосабы пераўтварэння сонечнай энергіі: цеплавы (ажыццяўляецца ў сонечных печах, сонечных воданагравальніках, апрасняльніках, сушылках, цяпліцах і інш.), фотаэлектрычны (у сонечных батарэях), тэрмаэлектрычны (у сонечных тэрмаэлектрычных генератарах), тэрмаэмісійны (у тэрмаэмісійных пераўтваральніках энергіі). Паводле рабочых т-р геліятэхніка падзяляецца на высока- (да 3000—3500 °C) і нізкатэмпературную (100—200 °C).

Паток сонечнай радыяцыі «дармавы» і невычэрпны, яго шчыльнасць на ўзроўні мора прыкладна 1 кВт/м² (у геліятэхн. разліках 0,815 кВт/м²). Спробы выкарыстання гэтага выпрамянення рабіліся яшчэ ў старажытнасці, аднак практычнага значэння не мелі. У 1770 Х.Б. дэ Сасюр (Швейцарыя) пабудаваў геліяўстаноўку тыпу «гарачая скрыня». Як асобная галіна тэхнікі геліятэхніка развіваецца з 2-й пал. 19 ст., калі былі створаны доследныя ўзоры паветраных і паравых сонечных рухавікоў (Францыя, Швецыя, ЗША). У Расіі ў 1890 В.К.Цэраскі правёў эксперыменты па плаўцы розных металаў у фокусе парабалічнага люстэрка. У 1912 каля Каіра (Егіпет) пабудавана сонечная энергетычная ўстаноўка магутнасцю каля 45 кВт. У 1930-я г. распрацаваны метады разліку геліяўстановак для атрымання эл. энергіі, апраснення вады, сушкі і інш. Даследаванні па прамым пераўтварэнні прамянёвай энергіі ў электрычную пашырыліся ў сувязі з асваеннем касм. прасторы. Значнае развіццё геліятэхніка атрымала ў Францыі, ЗША, Японіі, ПАР, Аўстраліі, Германіі, з краін СНД — у Расіі, Арменіі, Туркменіі, Узбекістане. Выкарыстанне сродкаў геліятэхнікі найб. эфектыўнае ў шыротах са значнай сонечнай радыяцыяй для энергазабеспячэння малаэнергаёмістых разгрупаваных спажыўцоў. У сувязі са збядненнем традыц. крыніц энергіі яны перспектыўныя і ў рэгіёнах з умераным кліматам, напр., геліятэхніка развіваецца ў Канадзе, Даніі, Швецыі. Павышэнне эфектыўнасці геліясістэм і пераадоленне прынцыповых недахопаў (невысокая шчыльнасць і няўстойлівасць сонечнай энергіі) забяспечваюцца значнымі памерамі паверхні, якая ўлоўлівае сонечную радыяцыю, яе канцэнтрацыяй на паверхні геліяпераўтваральніка, акумуляваннем цеплавымі, эл., хім. і інш. акумулятарамі. У адпаведнасці з гэтымі патрабаваннямі ствараецца шырокі спектр геліяўстановак рознага прызначэння.

На Беларусі даследаванні і распрацоўкі сродкаў і элементнай базы геліятэхнікі вядуцца з 1980-х г. у Акад. навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава» (АНК ІЦМА), Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН Беларусі, Цэнтр. НДІ механізацыі і электрыфікацыі сельскай гаспадаркі і інш. У АНК ІЦМА створаны доследныя ўзоры калектараў сонечнай энергіі на цеплавых трубах (разам з Армянскім аддз. Усесаюзнага НДІ крыніц току), распрацаваны праект «Сядзіба 21 стагоддзя», у энергабалансе якога значная роля сонечнай энергіі, розныя тыпы геліяцеплапераўтваральных сістэм — геліяводападагравальнікі магутнасцю 0,4—100 кВт, сонечныя радыятары (абагравальнік, сонечныя кухня, цяпліца, сушылка і інш.). Асвоены выпуск геліямодуляў, аснашчаных бакам-акумулятарам (захоўвае цяпло на працягу тыдня).

Літ.:

Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;

Мак-Вейг Д. Применение солнечной энергии: Пер. с. англ. М., 1981.

У.Л.Драгун, С.У.Конеў.

т. 5, с. 141

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ФІ́ЗІКА,

раздзел фізікі, у якім вывучаюцца працэсы генерацыі, узмацнення і распаўсюджвання лазернага выпрамянення, яго ўзаемадзеяння з рознымі асяроддзямі і аб’ектамі; фіз. асновы стварэння і выкарыстання лазераў частка квантавай электронікі.

Узнікла ў 1960-я г. на мяжы оптыкі, радыёфізікі, электронікі і матэрыялазнаўства. Атрымала хуткае развіццё з прычыны асаблівых якасцей лазернага промня: яго надзвычай высокіх кагерэнтнасці, монахраматычнасці, накіравальнасці распаўсюджвання, прасторавай і часавай шчыльнасці энергіі, вельмі малой працягласці асобных імпульсаў. Гэтыя якасці, іх спалучэнні і камбінацыі абумовілі развіццё лазернай тэхнікі — лазерных сродкаў даследавання розных асяроддзяў і аб’ектаў, выканання разнастайных лазерных тэхналогій, у т.л. тонкіх, стварэння аптычнай сувязі, апрацоўкі, запісу і счытвання інфармацыі (гл. Аптычны запіс). Выкарыстанне лазернага выпрамянення выклікала змены шэрагу паняццяў і ўяўленняў оптыкі і інш. галін ведаў. У выніку выкарыстання лазераў выяўлены і даследаваны такія нелінейна-аптычныя з’явы, як генерацыя гармонік, складанне і адыманне частот, вымушанае камбінацыйнае рассеянне, самафакусіроўка і тунэляванне лазернага пучка, чатырохфатоннае змешванне, двухфатоннае паглынанне, амплітудна-фазавая канверсія мадуляцыі, утварэнне салітонаў і інш. Нелінейна-аптычныя з’явы знайшлі шырокае выкарыстанне для кіравання характарыстыкамі лазернага выпрамянення (пры яго генерацыі і распаўсюджванні), вывучэння структуры рэчыва (гл. Лазерная спектраскапія) і дынамікі розных працэсаў у асяроддзях. У імпульсах лазернага выпрамянення фемтасекунднай (10 с) працягласці дасягнуты шчыльнасці магутнасці парадку 10​21 Вт/см2. Сілы ўздзеяння такіх імпульсаў на электроны і ядры атамаў істотна перавышаюць сілы іх узаемадзеяння ў ядрах, што дае магчымасць кіроўнага ўздзеяння на структуру атамаў і малекул. Лазерныя крыніцы выпрамянення выкарыстоўваюцца ў звычайных аптычных прыладах, што значна паляпшае іх характарыстыкі і пашырае магчымасці, і для стварэння прынцыпова новых прылад і метадаў даследавання, новых тэхн. сродкаў (аптычныя дыскі. лазерныя прынтэры, аудыё- і відэапрайгравальнікі, лініі валаконна-аптычнай сувязі, галаграфічныя і кантрольна-вымяральныя прылады). Дасягненні Л.ф. шырока выкарыстоўваюцца ў розных галінах навукі, прамысл. тэхналогіях, у ваен. тэхніцы, касманаўтыцы, медыцыне.

На Беларусі даследаванні па Л.ф. пачаліся ў 1961 у Ін-це фізікі АН пад кіраўніцтвам Б.І.Сцяпанава. Праводзяцца ў ін-тах фіз. і фізіка-тэхн. профілю Нац. АН Беларусі, установах адукацыі і прамысл. арг-цыях. Прадказана і атрымана генерацыя на растворах складаных малекул, створана серыя лазераў з плаўнай перастройкай частаты ў шырокім дыяпазоне; прапанаваны метады разліку і кіравання энергет., часавымі, частотнымі, палярызацыйнымі і вуглавымі характарыстыкамі лазераў і лазернага выпрамянення; створаны новыя тыпы лазерных крыніц святла агульнага і спец. прызначэння. Распрацаваны фіз. асновы дынамічнай галаграфіі, вывучаны заканамернасці ўзнікнення і працякання многіх нелінейна аптычных з’яў і распаўсюджвання святла ў нелінейна-аптычных асяроддзях.

Літ.:

Апанасевич П.А Основы теории взаимодействия света с веществом. Мн., 1977;

Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М., 1991;

Ярив А. Введение в оптическую электронику: Пер. с англ. М., 1983;

Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.

П.А.Апанасевіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕТРАЭНЕРГЕ́ТЫКА,

галіна энергетыкі, звязаная з распрацоўкай тэарэт. асноў, метадаў і тэхн. сродкаў для ператварэння ветравой энергіі ў эл., мех. і цеплавую. Займаецца таксама вызначэннем галін і маштабаў мэтазгоднага выкарыстання энергіі ветру ў нар. гаспадарцы. Ветраэнергетыка абапіраецца на аэралагічныя даследаванні, на базе якіх распрацоўваецца ветраэнергет. кадастр (па ім выяўляюць раёны са спрыяльным ветравым рэжымам). Аснова ветраэнергетыкі — ветраэлектрычныя станцыі (ВЭС).

Першыя ветрарухавікі (барабаннага тыпу) выкарыстоўваліся ў Стараж. Егіпце і Кітаі, у 7 ст. н.э. персы будавалі больш дасканалыя — крыльчатыя. Мяркуюць, што ветракі з’явіліся ў Еўропе і на Русі ў 8—9 ст., пашырыліся з 13 ст. (асабліва ў Галандыі, Даніі і Англіі), з 15 ст. — на Беларусі. Выкарыстоўваліся для пад’ёму вады, размолу зерня, прывода розных машын. У пач. 20 ст. М.Я.Жукоўскі распрацаваў тэорыю быстраходнага і высокапрадукцыйнага ветрарухавіка, пачалася прамысл. вытв-сць сродкаў ветраэнергетыкі. Былі пабудаваны першыя ВЭС: у Расіі каля Курска (1930, магутнасць 8 кВт), на Украіне каля Севастопаля (1931, 100 кВт), у Казахстане (пач. 1950-х г., 400 кВт). У канцы 1960-х г. у СССР створаны уніфікаваныя быстраходныя ветраэнергет. агрэгаты ВБЛ-3, ВПЛ-4, «Беркут» і інш., прызначаныя ў асноўным для пад’ёму вады на жывёлагадоўчых фермах, аддаленых пашах і інш. Перспектыўным лічыцца стварэнне магутных ветраэнергет. комплексных сістэм, якія спалучаюцца з дзейнымі энергасістэмамі і маюць эфектыўныя ветраагрэгаты (іх асаблівасць — паваротная вежа з двума ветраколамі, якія маюць 50-метровы размах лопасцей).

На Беларусі работы ў галіне ветраэнергетыкі пашырыліся з 1986. Уведзена ў дзеянне больш як 25 ветраэнергетычных установак (ВЭУ). Распрацавана ВЭУ малой магутнасці БВ-305 (5,5 кВт, дыяметр ветраротара 8 м, макс. скорасць яго вярчэння 100 аб/мін, дыяпазон рабочых скарасцей ветру 3,5—20 м/с, гадавая выпрацоўка электраэнергіі 12—15 МВт·гадз); доследная партыя зроблена на Мінскім НВП «Ветрамаш». Распрацоўваюцца ВЭУ магутнасцю 30 кВт для ацяплення аўтаномных аб’ектаў, ветрамех. ўстаноўка для перапампоўвання вадкасці з свідравін. Перспектыўныя ветраагрэгаты серыі ВТН (навук.-вытв. фірмы «Ветэн», Расія), прызначаныя для электразабеспячэння аўтаномных аб’ектаў: ВТН8-4 магутнасцю 4 кВт, для раёнаў з сярэднегадавой скорасцю ветру v ≥ 3,5 м/с; ВТН8-8 — 8 кВт, v ≥ 5 м/с; ВТН16-30 — 30 кВт, v ≥ 5 м/с. Эканам. работа ВЭУ забяспечваецца пры сярэднегадавых скарасцях ветру больш за 3,5 — 4 м/с на вышыні 10 м (на Беларусі 3—3,5 м/с у паўд. ч., 4—4,5 м/с у цэнтр., 4—5 м/с зімой у цэнтр. і паўн.-зах. ч.). Патрэбнасць Беларусі ў сродках ветраэнергетыкі на бліжэйшую перспектыву ацэньваецца ў 150 шт. агульнай магутнасцю 900 кВт. Найб. мэтазгодна камбінаванае выкарыстанне энергарэсурсаў — у гібрыдных устаноўках, дзе спалучаецца выкарыстанне энергіі ветру з энергіяй сонца, бія- і арган. паліва і інш.

Літ.:

Энергия ветра: Оценка технич. и экон. потенциала: Пер. с англ. М., 1982;

Шефтер Я.И. Использование энергии ветра. 2 изд. М., 1983.

Ю.Дз.Ільюхін, У.М.Сацута.

т. 4, с. 130

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

шко́ла, ‑ы, ж.

1. Навучальная ўстанова, якая ажыццяўляе агульную адукацыю і выхаваяне маладога пакалення. Хадзіць у школу. Выкладаць матэматыку ў школе. □ Штораніцы бяжыць у школу разам са сваімі аднагодкамі ўнук Бірынічаў. Хадкевіч. // Школьны будынак, у якім праводзіцца навучанне. Цяпер жа пакуль што былі адноўлены толькі два будынкі: школа і ўрачэбны ўчастак. Шамякін. // толькі адз. Сістэма агульнай адукацыі, сукупнасць навучальных устаноў. Дэкрэт аб адлучэнні царквы ад дзяржавы і школы ад царквы. // зб. Разм. Калектыў вучняў і настаўнікаў агульнаадукацыйнай навучальнай установы. І зноў яна [Наста] на плошчы, дзе штогод Вясёлы Першамай страчала школа. З. Астапенка.

2. Спецыялізаваная навучальная ўстанова, дзе навучэнцы атрымліваюць прафесіянальныя веды, кваліфікацыю. Усе яны — былыя вучні рамеснай школы паліграфістаў.. Іх школа знаходзілася тут жа [у друкарні], на першым паверсе. Брыль. Кіраўніцтва камбіната паслала.. [Віктара Вішаньку] вучыцца ў Свярдлоўскую школу брыгадзіраў-будаўнікоў. Дадзіёмаў. // Ваенная навучальная ўстанова, якая рыхтуе афіцэраў і малодшы камандны састаў. Школа прапаршчыкаў. Пяхотная школа. Школа малодшага каманднага саставу. // у спалучэнні са словам «вышэйшы». Назва некаторых навучальных устаноў, якія даюць вышэйшую адукацыю, вну. Вышэйшая партыйная школа.

3. чаго і якая. Набыццё ведаў, практычнага вопыту, а таксама сам вопыт, практычным веды чаго‑н. Школа жыцця. □ Школу «Савецкай Беларусі» прайшлі не толькі амаль усе пісьменнікі малодшага пакалення, якія пазней стварылі аб’яднанне «Маладняк», але і многія з тых, якія сфарміраваліся яшчэ да рэвалюцыі. Конан. Прайшоў я школу барацьбы і чуў дыханне перамогі. Дудар. // Тое, што дае практычныя веды, вопыт. Карацей сказаць — не хапала належнай сур’ёзнасці. А гэта тлумачылася тым, што сярод настаўнікаў не было асоб, прайшоўшых рэвалюцыйную школу на практыцы. Колас. Адным словам, калі нашы хлопцы не загінуць, то гэтае здарэнне будзе для іх добрай школай. Маўр.

4. Сістэма метадаў, правіл, прыёмаў вывучэння, асваення чаго‑н., авалодання чым‑н. Пачатковая школа ігры на баяне. Вучыцца іграць на цымбалах па школе Жыновіча. // Адукацыя, выхаванне ў святле якіх‑н. правіл, норм, прынцыпаў і пад. Палкоўнік пан Дэмбіцкі не лічыўся і з тою акалічнасцю, што ў штабе яго праціўніка не заўсёды вялі рэй прафесіяналы-штабісты старой ваеннай школы. Колас. // Спец. Майстэрства, уменне дрэсіроўкі каня, звязанае з манежнай выездкай, выкананнем розных практыкаванняў, тэмпаў язды і пад. Школа верхавой язды.

5. Навуковы, літаратурна-мастацкі, грамадска-палітычны, сацыяльна-эканамічны і пад. напрамак, плынь з характэрнымі, своеасаблівымі ўласцівасцямі, рысамі. Але тады яна [рэалістычная тэндэнцыя] яшчэ не ператварылася ў самастойную з’яву, не стала цэлай школай крытычнага рэалізму, аднак ужо станоўча ўздзейнічала на далейшае развіццё перадавой літаратуры. Ларчанка. // Група вучняў, аднадумцаў ці паслядоўнікаў каго‑н. І.П. Паўлаў і яго школа, дзякуючы правільнаму матэрыялістычнаму падыходу да распрацоўкі фізіялогіі мозга, раскрылі шмат якія «таямніцы» псіхічнага жыцця. «Беларусь». Неўзабаве з’явілася цэлая школа паслядоўнікаў А. Міцкевіча. Лойка.

6. Спец. Пітомнік, спецыяльны ўчастак, на якім вырошчваюцца сеянцы, саджанцы.

•••

Вышэйшая школа — агульная назва для вышэйшых навучальных устаноў (інстытутаў, універсітэтаў і пад.).

Вячэрняя школа — школа, вучні якой займаюцца ўвечары без адрыву ад вытворчасці і атрымліваюць сярэднюю адукацыю.

Земская школа — пачатковая школа ў дарэвалюцыйнай Расіі, якая знаходзілася ў распараджэнні земства.

Ланкастэрская школа — школа, у якой прымяняецца ланкастэрская сістэма навучання.

Натуральная школа — назва рэалістычнай плыні ў рускай літаратуры 30–40‑х гг. 19 ст.

Нядзельныя школы — школы для дарослых у дарэвалюцыйнай Расіі, у якіх праводзіліся заняткі толькі па нядзелях.

Сярэдняя школа — школа, якая дае сярэднюю адукацыю.

Царкоўнапрыходская школа — пачатковая школа ў дарэвалюцыйнай Расіі, якая знаходзілася ў распараджэнні царквы і прыходскага духавенства.

Школа-інтэрнат — павучальная ўстанова, дзе дзеці жывуць і вучацца.

Школа сельскай моладзі; школа рабочай моладзі — агульнаадукацыйная сярэдняя школа (ці васьмігодка), у якой займаецца моладзь без адрыву ад вытворчасці.

[Грэч. scholē.]

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

АСТРАНО́МІЯ

(ад астра... + грэч. nomos закон),

навука пра рух, будову, паходжанне і развіццё касм. целаў, іх сістэм і Сусвету ў цэлым. Вывучае розныя аб’екты: планеты і іх спадарожнікі, каметы і метэорнае рэчыва, зоркі, зорныя сістэмы (галактыкі), міжзорны газ і дыфузнае рэчыва, рассеянае ў касм. прасторы, эл.-магн. выпрамяненне нябесных целаў. Асн. раздзелы астраноміі: астраметрыя, астрафізіка, зорная астраномія, касмагонія, касмалогія, нябесная механіка, пазагалактычная астраномія, радыёастраномія.

Астраномія ўзнікла ў глыбокай старажытнасці з практычных патрэб чалавецтва. Рух Месяца, планет і сузор’яў дапамагаў вызначаць прамежкі часу і змены пораў года, весці каляндар, арыентавацца на мясцовасці. Практычны характар астр. ведаў адлюстраваўся ў нар. назвах касм. аб’ектаў (напр., Млечны Шлях — «Птушыны Шлях», планета Венера — «Вечарніца» і інш.) і ў стварэнні найпрасцейшых аграрна-астр. «абсерваторый». Адно з такіх збудаванняў дахрысціянскіх часоў з арыентаваных валуноў выяўлена і на Беларусі каля воз. Янова ў Полацкім раёне. Астраномія паспяхова развівалася ў Вавілоне, Егіпце, Стараж. Грэцыі, Індыі і Кітаі. Стараж.-грэч. вучоны Пталамей распрацаваў у 2 ст. геацэнтрычную сістэму свету, якая была агульнапрынятай амаль 1,5 тыс. гадоў. У сярэднія вякі астраномія дасягнула значнага развіцця ў дзяржавах Усходу. У 15 ст. Улугбек пабудаваў паблізу Самарканда астр. абсерваторыю з дастаткова дакладнымі на той час вугламернымі інструментамі. Узнікненне сучаснай астраноміі звязана са стварэннем геліяцэнтрычнай сістэмы свету (М.Капернік, 16 ст.), вынаходствам тэлескопа (Г.Галілей, пач. 17 ст.), адкрыццём законаў руху планет (І.Кеплер, пач. 17 ст.) і сусветнага прыцягнення закону (І.Ньютан, канец 17 ст.).

У 18 — пач. 20 ст. назіральная астраномія атрымала шматлікія звесткі пра Сонечную сістэму, фіз. прыроду зорак і інш. касм. аб’ектаў, што спрыяла стварэнню навук. карціны свету. Выкарыстанне ў астр. даследаваннях метадаў спектраскапіі, фатаграфіі і фотаметрыі прывяло да ўзнікнення астрафізікі. Вялікае значэнне мела заснаванне многіх астранамічных абсерваторый, удасканаленне астранамічных інструментаў і прылад, складанне зорных каталогаў з указаннем дакладных каардынат зорак. Гэтыя дасягненні астраноміі звязаны з працамі У.Гершэля (Вялікабрытанія), Ж.Лагранжа, П.Лапласа, У.Левер’е (Францыя), М.В.Ламаносава, В.Я.Струве, Ф.А.Брадзіхіна (Расія), К.Доплера (Аўстрыя) і інш. Значны ўклад у назіральную астраномію і астрафіз. метады даследавання зрабілі астраномы Віленскай астранамічнай абсерваторыі і астраномы — выхадцы з Беларусі: С.М.Блажко, Дз.І.Дубяга, Г.А.Ціхаў, В.К.Цэраскі. Астр. даследаванні ў б. СССР звязаны з працамі В.А.Амбарцумяна, А.А.Белапольскага, С.У.Арлова, Я.К.Харадзе і інш. Даследаванні спектраў галактык дазволілі Э.Хаблу (ЗША) выявіць у 1929 агульнае расшырэнне Сусвету, прадказанае рас. вучоным А.А.Фрыдманам (1922) на падставе тэорыі гравітацыі А.Эйнштэйна (1915—16). Сярэдзіна 20 ст. характарызавалася з’яўленнем новых сродкаў назірання і выкарыстаннем касм. тэхнікі, што значна расшырыла магчымасці астр. даследаванняў. Стварэнне аптычных і радыётэлескопаў з высокай раздзяляльнай здольнасцю, выкарыстанне штучных спадарожнікаў Зямлі, ракет, а таксама аптычных і электронных сістэм, у стварэнні якіх бралі ўдзел вучоныя Беларусі, дало магчымасць у 1960—80 выявіць і даследаваць новыя касм. аб’екты: радыёгалактыкі, квазары, пульсары, крыніцы рэнтгенаўскага і нейтрыннага выпрамяненняў. Астраномія стала эксперыментальнай навукай, здольнай непасрэдна даследаваць касм. прастору, вывучаць Месяц і бліжэйшыя планеты. З дапамогай касм. апаратаў (напр., «Венера», «Марс», «Меркурый», «Рэйнджэр» і інш.) атрыманы фотаздымкі Месяца і амаль усіх планет Сонечнай сістэмы (акрамя Плутона), адкрыты новыя спадарожнікі планет, кольцы вакол планет-гігантаў, сфатаграфавана ядро каметы Галея.

Літ.:

Бакулин П.М., Кононович Э.В., Мороз В.И. Курс обшей астрономии. 5 изд. М., 1983;

Мартынов Д.Я. Курс обшей астрофизики. 4 изд. М., 1988;

Климишин И.А. Астрономия наших дней. 3 изд. М., 1986;

Паннекук А. История астрономии: Пер. с англ. М., 1966.

А.А.Навіцкі.

т. 2, с. 52

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна хіміі, якая вывучае злучэнні вугляроду з інш. элементамі (арганічныя злучэнні) і іх ператварэнні. Займаецца сінтэзам і вызначэннем структуры арган. злучэнняў, вывучэннем сувязі хім. будовы рэчываў з рэакц. здольнасцю і фіз. ўласцівасцямі, практ. выкарыстаннем. Падзяляецца на стэрэахімію, хімію высокамалекулярных злучэнняў, прыродных рэчываў (антыбіётыкаў, вітамінаў, гармонаў і інш.), металаарган., фторарган., комплексных злучэнняў, фарбавальнікаў. Цесна звязана з біяхіміяй, медыцынай, біялогіяй, арган. геахіміяй, малекулярнай біялогіяй і інш. галінамі навук.

З’явілася ў пач. 19 ст. ў выніку абагульнення ведаў пра ўласцівасці рэчываў жывёльнага і расліннага паходжання і ўяўленняў таго часу аб жыццёвай сіле (vis vitalis), якая быццам бы стварае арган. рэчывы толькі ў жывых арганізмах. Тэрмін «арганічная хімія» ўведзены Ё.Берцэліусам (1827). Сінтэз мачавіны (Ф.Вёлер; 1828), аніліну (М.М.Зінін; 1842), воцатнай кіслаты (А.Кольбе; 1845), рэчываў тыпу тлушчаў (П.Бертло; 1854), цукрыстага рэчыва (А.М.Бутлераў; 1861) паказаў магчымасць штучнага атрымання арган. рэчываў. З 2-й чвэрці 19 ст. пачалі развівацца тэарэт. ўяўленні арганічнай хіміі, у т. л. тэорыя радыкалаў (Ю.Лібіх, Вёлер, Э.Франкленд, Р.Бунзен), тэорыя тыпаў (Ж.Дзюма, Ш.Жэрар і О.Ларан), паняцце пра валентнасць хім. элементаў, чатырохвалентнасць вугляроду і здольнасць яго атамаў ствараць складаныя малекулы. Абгрунтаваная ў 1861 Бутлеравым хімічнай будовы тэорыя прапанавала існаванне сувязі паміж будовай і ўласцівасцямі арган. злучэнняў, растлумачыла з’яву прасторавай ізамерыі арган. злучэнняў. А.Кекуле ў 1865 створана тэорыя будовы араматычных злучэнняў (на прыкладзе бензолу); у 1874 Я.Вант-Гоф і Ж.Ле Бель заклалі асновы стэрэахіміі, вылучылі аптычную ізамерыю і геаметрычную ізамерыю арган. рэчываў. Развіццё арганічнай хіміі ў пач. 20 ст. звязана з дасягненнямі квантавай фізікі і электронных тэорый хім. сувязі. Вызначаны тыпы хім. сувязі; Г.Льюіс, В.Косель, К.Інгалд, Л.Полінг распрацавалі і дапоўнілі ўяўленнямі квантавай хіміі і квантава-хімічнымі разлікамі электронную тэорыю будовы арган. злучэнняў, прадказалі і растлумачылі арганічнай хіміі рэакцыйную здольнасць. У 2-й пал. 20 ст. пачалося станаўленне фізічнай арганічнай хіміі, у якой абагульнены ўяўленні па механізмах рэакцый і сувязі паміж структурай арган. злучэнняў і іх рэакц. здольнасцю; шырокае выкарыстанне ў даследаваннях храматаграфіі, рэнтгенаскапіі, масспектраскапіі, метадаў ЭПР, ЯМР, ІЧ- і УФ-спектраскапіі. Сінтэзаваны новыя класы крэмнійарган. злучэнняў (полісілаксаны), поліаміды (нейлон), фторпалімеры (тэфлон), цэнавыя злучэнні пераходных металаў (ферацэн), фізіялагічна актыўныя злучэнні, лекавыя прэпараты, атрутныя рэчывы, сродкі аховы раслін, антыпірэны. Метады арганічнай хіміі разам з фіз. метадамі даследавання выкарыстоўваюцца ў вызначэнні будовы нуклеінавых кіслотаў, бялкоў, складаных прыродных злучэнняў, з дапамогай матэм. мадэлявання ажыццяўляецца мэтанакіраваны сінтэз арган. рэчываў з зададзенымі ўласцівасцямі. Магчымасці арганічнай хіміі дазволілі сінтэзаваць хларафіл, вітамін B12 (Р.Вудварт), полінуклеатыды (А.Тод), распрацаваць аўтаматызаваны сінтэз ферментаў. Сучаснае дасягненне арганічнай хіміі ў геннай інжынерыі — сінтэз актыўнага гена (Х.Каран; 1976). Выкарыстанне дасягненняў арганічнай хіміі прывяло да стварэння тэхналогій вытв-сці сінт. каўчукаў, пластычных масаў, сінт. валокнаў, фарбавальнікаў, кінафотаматэрыялаў, атрутных рэчываў, сродкаў аховы раслін, духмяных рэчываў, лек. прэпаратаў.

На Беларусі даследаванні па арганічнай хіміі пачаліся ў 1924 у БДУ і вядуцца ў ін-тах фізіка-арган. і біяарган. хіміі АН, БДУ, Бел. тэхнал. ун-це, с.-г., мед. і інш. НДІ. Сінтэзаваны і вывучаны ператварэнні металаарган., поліхлорарган., пераксідных злучэнняў, ацыклічных і гетэрацыклічных злучэнняў, стэроідаў, гетэрастэроідаў, простагландзінаў, нуклеатыдаў, тэрпеноідаў. Буйнейшыя прадпрыемствы: ВА «Палімір» (г. Наваполацк), ВА «Азот» (г. Гродна), Магілёўскі камбінат сінт. валокнаў.

Літ.:

Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. Кн. 1—2. 2 изд. М., 1974;

Нейланд О.Я. Органическая химия. М., 1990.

К.Л.Майсяйчук.

т. 1, с. 467

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

КУЛЬТУ́РА

(ад лац. cultura апрацоўка, выхаванне, адукацыя, шанаванне),

духоўны змест чалавечай жыццядзейнасці, сацыяльнай арганізацыі і пазнання, якія выяўляюцца ў нац. самабытных тыпах эканомікі, правасвядомасці, рэлігіі, мастацтва, тэарэт. і практычных ведаў, асвячоных традыцыяй, культам і маральнымі імператывамі. Паводле эмпірычнага вызначэння, К. — сукупнасць рэальных і патэнцыяльных каштоўнасцей, якія ствараюцца людзьмі ў працэсе эканам., грамадска-паліт. і творча-духоўнай дзейнасці. Суадносіцца з цывілізацыяй як сваім этапам на адносна высокім узроўні развіцця пэўнага тыпу К. (стараж.-егіпецкая, антычная і інш. цывілізацыі). Як цэласную сістэму К. даследуе культуралогія, а яе падсістэмы і элементы — паасобныя гуманіт. навукі. Комплекснае даследаванне гісторыі рэгіёнаў і народаў уключае адпаведныя раздзелы па гісторыі К. Існуе мноства метадаў тыпалогіі і класіфікацыі К. Паводле характару суадносін нац. (рэгіянальнага) і агульначалавечага (універсальнага) К. бывае «адкрытая», здольная да пазітыўнага ўзаемадзеяння з іншанац. культурамі, і «закрытая», схільная да самаізаляцыі. У еўрап. культуралогіі вылучаюць гіст. тыпы К.: першабытная, старажытная, сярэдневяковая, рэнесансавая, новая і сучасная. Паводле структуры і зместу яе падзяляюць на этнічную, класічную і посткласічную, традыцыйную і мадэрнісцкую. У шырокім сэнсе паняцце К. ўключае не толькі спецыфічна духоўныя сферы творчасці (мова, міфалогія, рэлігія, мараль, правасвядомасць, мастацтва, навука, філасофія), але і сферы вытв-сці, абмену матэрыяльнымі каштоўнасцямі. У адпаведнасці з гэтай спецыфікай К. ўмоўна падзяляецца на духоўную і матэрыяльную. У асобную комплексную галіну вылучаецца К. мастацкая — здольнасць грамадства ствараць, адэкватна ўспрымаць і ацэньваць усе віды і жанры маст. творчасці. Сукупнасць рэгіянальных і універсальных архетыпаў, увасобленых у мове, міфалогіі, звычаях, абрадах, фальклоры, у класічнай л-ры і інш. відах мастацтва, складаюць культурную традыцыю, якая вызначае нац. самабытнасць К. асобных народаў і макрарэгіёнаў.

Бел. К. належыць да тыпу адкрытых. Яна прайшла асн. этапы, характэрныя для агульнаеўрап. культурнага развіцця (стараж. дахрысціянскі перыяд, сярэдневяковы, рэнесансавы і інш.), развівалася ва ўзаемадзеянні са славянскімі, балцкімі і інш. культурамі, чэрпала свае рэсурсы з багатых крыніц нар. творчасці. У стараж. перыяд высокай канструктыўнай і маст. дасканаласці дасягнулі хатнія рамёствы і ўжытковае мастацтва. Пачынаючы з сярэдневякоўя адбывалася дыферэнцыяцыя старадаўняй К., яе падзел паводле утылітарных, рэліг., эстэтычных і інш. функцый. Сінтэз нар. К. і хрысц. духоўнасці садзейнічаў росквіту фальклору, інш. відаў этн. К., сабраных і апісаных у 19—20 ст. Заканамернасцю развіцця бел. нац. К. ў працэсе дээтнізацыі сац. эліты і страты дзярж. статуса роднай мовы народа з’яўляецца паэтапнае культурна-нац. Адраджэнне — вяртанне яе да актыўнага грамадскага функцыянавання і падключэнне да кантэксту еўрап. і сусв. культ. творчасці (гл. Адраджэнне нацыянальнае). Новы этап развіцця бел. К. пачаўся пасля абвяшчэння суверэннай і незалежнай Рэспублікі Беларусь.

Літ.:

Практычнае вырашэнне нацыянальнага пытання ў БССР. Ч. 1. Беларусізацыя. Мн., 1928;

Конан У.М. Развіццё эстэтычнай думкі ў Беларусі (1917—1934 гг.). Мн., 1968;

Яго ж. Беларуская культура: Гіст. нарыс (X ст. — 1917 г.) // Адукацыя і выхаванне. 1994. № 10;

Дорошевич Э., Конон В. Очерк истории эстетической мысли Белоруссии. М., 1972;

Мальдзіс А.І. На скрыжаванні славянскіх традыцый. Мн., 1980;

Беларусіка=Albaruthenica. Кн. 3. Нацыянальныя і рэгіянальныя культуры, іх узаемадзеянне. Мн., 1994;

Нарысы гісторыі Беларусі. Ч. 1—2. Мн., 1994—95;

Очерки истории науки и культуры Беларуси IX — начала XX в. Мн., 1996;

Лыч Л.М., Навіцкі У.І. Гісторыя культуры Беларусі. 2 выд. Мн., 1997;

Крукоўскі М. Чалавек не можа не тварыць // Мастацтва. 1998. № 1—6.

У.М.Конан.

т. 9, с. 11

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКАДЭ́МІЯ НАВУ́К БЕЛАРУ́СІ,

вышэйшая навуковая самакіравальная ўстанова, якая ажыццяўляе і каардынуе фундаментальныя і пошукавыя даследаванні ў Рэспубліцы Беларусь па асн. кірунках прыродазнаўчых, тэхн. і грамадскіх навук. Заснавана 1.1.1929 у Мінску на базе Інстытута беларускай культуры (Інбелкульта) паводле пастановы ЦВК і СНК БССР ад 13.10.1928. Да 1936 наз. Беларуская АН (БАН), да 1991 — АН БССР. У 1932 у Акадэміі было 14 ін-таў. У канцы 1920-х — 1930-я г. па надуманых абвінавачаннях было рэпрэсіравана больш як 140 супрацоўнікаў АН (у т. л. акадэмікі Г.І.Гарэцкі, П.В.Горын, А.Д.Дубах, М.М.Дурнаво, В.Ю.Ластоўскі, Я.Лёсік, С.М.Некрашэвіч, У.І.Пічэта, А.І.Смоліч, Б.А.Тарашкевіч, М.М.Шчакаціхін і інш.), што адмоўна адбілася на развіцці ўсіх навук. кірункаў. Найбольш пацярпелі гуманіт. навукі, дзе поруч са знішчэннем буйных бел. грамадазнаўцаў ліквідавана і распрацаваная імі навук. метадалогія, месца якой у гуманіт. даследаваннях 1930—50-х г. занялі празмерна гнуткія прынцыпы тагачаснай паліт. практыкі. У 1941 у АН было 12 н.-д. устаноў, у т. л. 9 ін-таў. У гады Вял. Айч. вайны АН панесла вял. людскія, матэрыяльныя і культ. страты (толькі матэрыяльны ўрон склаў больш за 300 млн. руб; у тагачасных цэнах). За 1-е пасляваеннае 10-годдзе адноўлены даваен. навук. ўстановы і створаны новыя. Сусв. навук.-тэхн. рэвалюцыя ў 1960—80-я г. дала значны імпульс далейшаму развіццю АН, абумовіла стварэнне многіх новых устаноў фізіка-матэм. і тэхн. профілю. На 1.1.1991 у АН працавалі 17 093 чал., у т. л. 5967 навук. работнікаў, 55 акад., 96 чл.-кар., 375 д-роў і 2557 канд. навук. Перабудовачныя працэсы 1980-х г. і эканам. крызіс пач. 1990-х г. паўплывалі на змяншэнне аб’ёму даследаванняў. На 1.1.1995 у складзе АН 11 218 супрацоўнікаў, у т. л. 4747 навук. работнікаў, 65 акад., 99 чл.-кар., 444 д-ры і 2139 канд. навук. Кіраванне работай АН ажыццяўляюць прэзідэнт і выбарны калегіяльны орган — Прэзідыум АН. Мае 6 аддзяленняў, якія аб’ядноўваюць н.-д. ўстановы па розных галінах навукі.

У аддзяленні фізікі, матэматыкі і інфарматыкі (ін-ты: фізікі; малекулярнай і атамнай фізікі; прыкладной оптыкі; матэматыкі; фізікі цвёрдага цела і паўправаднікоў; электронікі; тэхнічнай кібернетыкі; аддзел аптычных праблем інфарматыкі; Вылічальны цэнтр) вядуцца распрацоўкі ў галіне лазернай фізікі, аптычных метадаў даследавання прыродных і штучных асяроддзяў, фундаментальных узаемадзеянняў у фізіцы палёў, часціц і атамных ядраў, фізікі плазмы і плазменных тэхналогій, стварэння новых перспектыўных матэрыялаў, дыферэнцыяльных ураўненняў, вылічальнай матэматыкі, алгебры, новых інфарм. тэхналогій і інш. У аддзяленні фізіка-тэхнічных праблем машынабудавання і энергетыкі (ін-ты: праблем энергетыкі; радыяцыйных фізіка-хімічных праблем; радыеэкалагічных праблем; фізіка-тэхнічны; прыкладной фізікі; тэхналогіі металаў; тэхнічнай акустыкі; механікі металапалімерных сістэм; надзейнасці машын; акад. навук. комплекс «Ін-т цепла- і масаабмену імя А.В.Лыкава»; інжынерны цэнтр «Плазматэг»; навук-тэхн. цэнтр «Нетрадыцыйная энергетыка і энергазберажэнне», навук. цэнтр праблем механікі машын і аддзел праблем рэсурсазберажэння) вядуцца даследаванні ў галіне цепла- і масанераносу ў капілярна-порыстых целах, дысперсных сістэмах, рэалагічных асяроддзях, турбулентных патоках і ў нізкатэмпературнай плазме, фізікі, хіміі і трыбалогіі паверхні, тэхналогіі атрымання і апрацоўкі металічных, палімерных, кампазіцыйных і звышцвёрдых матэрыялаў, механікі мабільных машын і надзейнасці, цеплафізікі ліцейных працэсаў, распрацоўкі фізічных прынцыпаў і сродкаў дыягностыкі неразбуральнага кантролю рэчываў, матэрыялаў, вырабаў і тэхпрацэсаў і інш. У аддзяленні хімічных і геалагічных навук (ін-ты: агульнай і неарганічнай хіміі; біяарганічнай хіміі; геалагічных навук; праблем выкарыстання прыродных рэсурсаў і экалогіі; фізіка-арганічнай хіміі, Рэсп. навук.-тэхн. цэнтр «Экамір»; Хіміка-тэхналагічны цэнтр) вядуцца даследаванні ў галіне фізіка-хіміі палімераў і арган. сінтэзу, сінтэзу высокаактыўных і селектыўных адсарбентаў і каталізатараў, прыроды паверхневых з’яў і дысперсных сістэм, структурных асноў функцыянавання бялкоў і нуклеінавых кіслот, распрацоўкі рацыянальных падыходаў да накіраванага сінтэзу і вылучэння біялагічна важных злучэнняў, ацэнкі, прагназавання і аптымізацыі ўздзеяння натуральных і антрапагенных фактараў на прыроднае асяроддзе, стварэння рэсурсазберагальных тэхналогій здабычы, перапрацоўкі і выкарыстання цвёрдых гаручых выкапняў, будовы і эвалюцыі зямной кары і прыроднага асяроддзя на тэр. Беларусі. У аддзяленні біялагічных навук (ін-ты: генетыкі і цыталогіі; заалогіі; лесу; мікрабіялогіі; радыебіялогіі; фотабіялогіі; эксперыментальнай батанікі; Цэнтр. батанічны сад) вядуцца даследаванні ў галіне дынамікі супольнасцяў раслін і жывёл Беларусі, біял. рэсурсаў, асновы іх узнаўлення, рацыянальнага выкарыстання і аховы, генетычных і фізіёлага-біяхімічных праблем селекцыі, прадукцыйнасці і імунітэту раслін, генетычнай і клетачнай інжынерыі раслін і мікраарганізмаў, выкарыстання мікраарганізмаў у біятэхналогіі, сельскай гаспадарцы і аховы навакольнага асяроддзя, экалагічнай абстаноўкі, абумоўленай катастрофай на Чарнобыльскай АЭС, медыка-біял. і генетычных вынікаў радыяцыі, спосабаў зніжэння яе шкоднага ўздзеяння і інш. У аддзяленні гуманітарных навук (ін-ты: гісторыі; літаратуры; мастацтвазнаўства, этнаграфіі і фальклору; мовазнаўства; сацыялогіі; філасофіі і права; эканомікі; аддзел навук. інфармацыі па гуманітарных навуках) вядуцца даследаванні ў галіне вывучэння гісторыі бел. народа, яго мовы і л-ры, заканамернасцяў развіцця бел. мастацтва, матэрыяльнай культуры і побыту народа, гісторыі і тэорыі вусна-паэт. творчасці, праблем этн. і мед. антрапалогіі беларусаў, распрацоўкі сацыялагічнай мадэлі сац. і паліт. працэсаў ва ўмовах пераходу грамадства ад таталітарнай да дэмакратычнай сістэмы рыначнага тыпу, вывучэння гісторыі філас. і паліт.-прававой думкі, заканамернасцяў грамадскага развіцця, фарміравання дэмакр. дзярж. і паліт. сістэмы Рэспублікі Беларусь, распрацоўкі нац.-дзярж. мадэлі эканомікі Беларусі і механізму яе дзярж. рэгулявання і інш. У аддзяленні праблем медыцыны (ін-ты біяхіміі; фізіялогіі) вядуцца даследаванні ў галіне асаблівасцяў уздзеяння фактараў сучасных экасістэм і ладу жыцця на здароўе чалавека; вывучаюць праблемы аховы генафонду насельніцтва краіны, патагенезу асн. захворванняў чалавека, стварэння новых метадаў дыягностыкі, прафілактыкі і лячэння сардэчна-сасудзістых, анкалагічных, нервовых, эндакрынных і інш. хвароб. Некаторыя ўстановы АН знаходзяцца або маюць свае рэгіянальныя аддзяленні ў абл. цэнтрах.

Для забеспячэння ўкаранення вынікаў навук. даследаванняў і навук.-тэхн. распрацовак у АН створана доследна-канструктарская база, у складзе якой: Цэнтр. канструктарскае бюро, канструктарскае аддзяленне з доследнымі вытв-сцямі; 10 спец. канструктарскіх бюро з доследнымі вытв-сцямі пры ін-тах. У сістэме АН выдавецка-паліграфічнае вытворчае аб’яднанне «Беларуская навука», Бібліятэка цэнтральная навуковая імя Я.Коласа, Цэнтральны навук. архіў, музеі стараж.-бел. культуры, гісторыі АН Беларусі. АН выдае «Даклады АН Беларусі», «Весці АН Беларусі» (5 серый), часопісы «Дифференциальные уравнения», «Инженерно-физический журнал», «Журнал прикладной спектроскопии», часопіс «Трение и износ», шматтыражную газ. «Навіны АН Беларусі». Падрыхтоўка навуковых кадраў вядзецца праз дактарантуру і аспірантуру. Асобныя вынікі даследаванняў АН прызнаны сусв. супольніцтвам вучоных як навук. адкрыцці (ультрагукавы капілярны эфект адкрыў акад. Я.Р.Канавалаў, 1972; з’яву рухомасці падвойных сувязяў у спалучаных дыёнавых злучэннях — акад. А.А.Ахрэм разам з вучонымі з Масквы і Новасібірска, 1975; з’яву стабілізацыі-лабілізацыі электронна-ўзбуджаных шмататамных малекул — акад. М.А.Барысевіч і праф. Б.С.Непарэнт, 1978; бакавы зрух праменя пры адбіцці святла — акад. Ф.І.Фёдараў, 1980, і інш.). Многія навук. распрацоўкі знайшлі шырокае прымяненне ў нар. гаспадарцы Беларусі, у т. л. новыя матэрыялы і тэхналогіі, унікальныя прыборы і высокапрадукцыйныя гатункі культ. раслін.

Прэзідэнты АН: У.М.Ігнатоўскі (1929—31), П.В.Горын (1931—36), І.З.Сурта (1936—37), К.В.Гораў (1938—47), А.Р.Жэбрак (1947), М.І.Грашчанкаў (1947—51), В.Ф.Купрэвіч (1952—69), М.А.Барысевіч (1969—87), У.П.Платонаў (1987—92), Л.М.Сушчэня (з 1992).

Літ.:

Купревич В.Ф. Академия наук Белорусской ССР: Очерк истории и деятельности. 3 изд. Мн., 1968;

Акадэмія навук Беларускай ССР. Мн., 1979;

Токарев Н.В. Академия наук Белорусской ССР: годы становления и испытаний (1929—45). Мн., 1988;

Академия наук Белорусской ССР: Краткий очерк Мн., 1989;

Інстытут беларускай культуры. Мн., 1993.

В.К.Шчэрбін.

Акадэмія навук Беларусі. Галоўны корпус.
Да арт. Акадэмія навук Беларусі. У лабараторыі ядзернай спектраскапіі Інстытута фізікі.
Да арт. Акадэмія навук Беларусі. У музеі Інстытута мастацтвазнаўства, этнаграфіі і фальклору.
Да арт. Акадэмія навук Беларусі. У лабараторыі экалогіі наземных жывёл Інстытута заалогіі.

т. 1, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫЛІЧА́ЛЬНАЯ МАТЭМА́ТЫКА,

раздзел матэматыкі, у якім распрацоўваюцца і даследуюцца метады лікавага рашэння матэм. задач. Метады вылічальнай матэматыкі прыбліжаныя, падзяляюцца на аналітычныя (даюць прыбліжаныя рашэнні ў выглядзе аналітычнага выразу) і лікавыя (у выглядзе табліцы лікаў).

Узнікненне вылічальнай матэматыкі звязана з неабходнасцю рашэння асобных задач (вымярэнне адлегласцей, плошчаў, аб’ёмаў і інш.). Развіццё навукі, асабліва астраноміі і механікі, спрыяла развіццю матэматыкі ўвогуле і вылічальнай матэматыкі ў прыватнасці. Складаліся табліцы эмпірычна знойдзеных залежнасцей, што прывяло да ўзнікнення паняцця функцыі і задачы інтэрпалявання (гл. Інтэрпаляцыя). Поспехі вылічальнай матэматыкі звязаны з імёнамі І.Ньютана, Л.Эйлера, М.І.Лабачэўскага, К.Ф.Гаўса, П.Л.Чабышова, С.А.Чаплыгіна, А.М.Крылова, А.М.Ціханава, А.А.Самарскага, У.І.Крылова, Л.В.Кантаровіча і інш. Многія задачы вылічальнай матэматыкі можна запісаць у выглядзе y=Ax, дзе x і y належаць зададзеным мноствам X і Y, A — некаторы аператар. Для рашэння задачы трэба знайсці у па зададзеным х ці наадварот. У вылічальнай матэматыцы гэта задача рашаецца заменай мностваў X, Y і аператара A (ці толькі некаторых з іх) іншымі, зручнымі для вылічэнняў. Замена робіцца так, каб рашэнне новай задачы y=Bx было ў нейкім сэнсе блізкім да рашэння першапачатковай задачы. Напр., калі ў якасці Ax узяць інтэграл a b x(t) dt , то прыбліжанае значэнне яго ў многіх выпадках можна вылічыць паводле т.зв. квадратурнай формулы a b x(t) dt k 1 n Ak x (tk) , дзе Ak і tk — некаторыя фіксаваныя лікі. Гэта адна з класічных задач вылічальнай матэматыкі. Пры рашэнні яе, асабліва ў выпадку кратнага (шматразовага) і кантынуальнага інтэгравання, карыстаюцца Монтэ-Карла метадам. Прынцыповае значэнне ў вылічальнай матэматыцы належыць тэорыі прыбліжэння функцый, якая адыгрывае і агульнаматэм. ролю. Адна з характэрных задач прыбліжэння функцый — задача інтэрпалявання, г.зн. пабудова для зададзенай функцыі 𝑓(t) прыбліжанай функцыі 𝑓n(t), якая супадае з 𝑓(t) у фіксаваных вузлах t1, t2, ..., tn. У тэорыі прыбліжэння функцый сапраўднага (а пазней і камплекснага) пераменнага распрацоўваліся метады прыбліжэння функцый аднаго класа функцыямі інш. класаў, а таксама вывучаліся пытанні збежнасці і ацэнак прыбліжэнняў. Найб. пашыраныя задачы вылічальнай матэматыкі — задачы алгебры [рашэнне сістэм лінейных алгебраічных ураўненняў, вылічэнне вызначнікаў (дэтэрмінантаў) і адваротных матрыц, знаходжанне ўласных вектараў і ўласных значэнняў матрыц, вызначэнне каранёў мнагачленаў]. У задачы прыбліжанага рашэння сістэмы лінейных ураўненняў Ax=b, дзе A — квадратная матрыца, x і b — вектары-калонкі, часта выкарыстоўваюцца ітэрацыйныя метады. Многія ітэрацыйныя метады рашэння гэтай сістэмы маюць выгляд xk = xk1 + Bk ( b Axk1 ) , дзе Bk ( k = 1, 2, ... ) — некаторая паслядоўнасць матрыц, x° — пачатковае прыбліжэнне, часам адвольнае. Розны выбар матрыц Bk дае розныя ітэрацыйныя працэсы. Значную частку вылічальнай матэматыкі складаюць прыбліжаныя і лікавыя метады рашэння звычайных дыферэнцыяльных ураўненняў, дыферэнцыяльных ураўненняў у частковых вытворных, інтэгральных ураўненняў, інтэгра-дыферэнцыяльных ураўненняў, вылічальныя метады варыяцыйнага злічэння, аптымальнага кіравання, задач стахастычнага аналізу і інш. З’яўленне вылічальных машын значна расшырыла кола задач і стымулявала далейшую распрацоўку метадаў вылічальнай матэматыкі з улікам магчымасцей вылічальных машын, у прыватнасці распрацоўкі спец. алгарытмаў, арыентаваных на паралельную рэалізацыю.

На Беларусі даследаванні па ўсіх асн. кірунках вылічальнай матэматыкі і падрыхтоўкі навук. кадраў пачаліся з 1950-х г. у АН і БДУ пад кіраўніцтвам акад. У.І.Крылова; асобныя пытанні вылічальнай матэматыкі распрацоўваліся і раней.

Літ.:

Березин И.С., Жидков Н.П. Методы вычислений. Т. 1. 3 изд. М., 1966;

Т. 2. 2 изд. М., 1962;

Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. 5 изд. М.; Л., 1962;

Крылов В.И. Приближенное вычисление интегралов. 2 изд. М., 1967;

Крылов В.И., Скобля Н.С. Справочная книга по численному обращению преобразования Лапласа. Мн., 1968;

Турецкий А.Х. Теория интерполирования в задачах. Мн., 1968;

Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. 2 изд. М.; Л., 1963;

Янович Л.А. Приближенное вычисление континуальных интегралов по гауссовым мерам. Мн., 1976.

Л.А.Яновіч.

т. 4, с. 311

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

сістэ́ма, ‑ы, ж.

1. Сукупнасць заканамерна звязаных паміж сабой элементаў (прадметаў, з’яў, поглядаў, ведаў і пад.), якія складаюць пэўнае цэласнае ўтварэнне, адзінства. Сістэма галактык. // Сукупнасць прынцыпаў, якія з’яўляюцца асновай якога‑н. вучэння. Філасофская сістэма класікаў марксізма-ленінізма. Педагагічная сістэма Макаранкі. // Сукупнасць метадаў, правіл ажыццяўлення чаго‑н. Сістэма кантролю. Сістэма планавання. // Сукупнасць якіх‑н. элементаў, адзінак, якія аб’ядноўваюцца па агульнай прыкмеце, прызначэння). Сістэма гукаў беларускай мовы. □ Нанава наладзіць падпольную сувязь пры дапамозе сістэмы троек было нялёгка. Машара.

2. Парадак, абумоўлены правільным размяшчэннем і ўзаемнай сувяззю частак чаго‑н. Даводзілася ўсе свае веды прыводзяць у сістэму, многа чаго чытаць. Шахавец. // Прадуманы план. Падрыхтоўка да паступлення ў ваенныя вучылішчы ішла адпаведна намі ж распрацаванай сістэме. Навуменка. // Звычайны, устаноўлены распарадак чаго‑н. [Дыспетчарскія] даклады.. увайшлі ў сістэму, праводзяцца штодзённа. Шынклер. // Прынятае ўстанаўленне, парадак; закон. Сістэма атэстацыі працаўнікоў. Сістэма падаткаў. Сістэма водпускаў. □ [Шыковіч:] — Міна Азаравіч, скажыце, калі ласка, якая ў вас сістэма падбору дакументаў? Шамякін.

3. Форма арганізацыі, будова чаго‑н. (дзяржаўных, палітычных, гаспадарчых адзінак, устаноў і пад.). Дзяржаўная сістэма. Выбарчая сістэма. // Форма грамадскага ладу; фармацыя. Сацыялістычная сістэма. Капіталістычная сістэма. □ Там крызіс лютуе, Там крык безрабоцця — Сістэма старая згніла. Колас.

4. Сукупнасць гаспадарчых адзінак, блізкіх па сваіх задачах і арганізацыйна аб’яднаных у адзінае цэлае. Сістэма аховы здароўя. Сістэма органаў народнай асветы. Працаваць у сістэме ўстаноў Акадэміі навук БССР. □ К гэтаму часу атрад пачаў дзейнічаць ужо ў сістэме часцей Чырвонай Арміі. Чорны.

5. Структура, якая складае адзінства ўзаемна звязаных частак. Сардэчна-сасудзістая сістэма. Каранёвая сістэма расліны. □ Цукар падтрымлівае нервовую сістэму і асабліва карысны пры разумовай працы. Маўр. // Тэхнічнае адзінства, сукупнасць узаемна звязаных збудаванняў, механізмаў і пад., якія дзейнічаюць узгоднена. Вартавыя сістэмы касмічнага карабля. □ Над капустай шэрым алавяным бляскам адсвечвалі трубы арашальнай сістэмы. Ракітны. // Марка, канструкцыя якіх‑н. машын, іх частак. Вінтоўка сістэмы Бердана. □ У калгасе лепш ураблялася зямля, у калгасе былі трактары, плугі навейшай сістэмы. Колас. // Сукупнасць якіх‑н. прадметаў, прыстасаванняў і пад. аднаго прызначэння. Сістэма штучных спадарожнікаў. □ Ілья Ільіч устаў, паслухмяна падаўся ў сенцы і хоць марудна, але абмацаў сістэму запорак, адчыніў дзверы. Кулакоўскі.

6. У батаніцы і заалогіі — класіфікацыя, групаванне. Сістэма Лінея.

7. У геалогіі — сукупнасць пластоў горных парод, якая характарызуецца пэўнымі выкапнямі, фаунай і флорай.

•••

Вегетатыўная нервовая сістэма — частка нервовай сістэмы, якая рэгулюе дзейнасць унутраных органаў і абмен рэчываў у арганізмах.

Геацэнтрычная сістэма свету — абвергнутае навукай уяўленне, што Зямля з’яўляецца нерухомым цэнтрам сусвету, вакол якога рухаюцца ўсе планеты і зоркі.

Геліяцэнтрычная сістэма свету — вучэнне, якое даказвае, што Зямля і іншыя планеты рухаюцца вакол Сонца.

Дзесятковая сістэма класіфікацыі — класіфікацыя кніг у бібліятэках, заснаваная на падзеле кніг па зместу на дзесяць асноўных раздзелаў, кожны з якіх у сваю чаргу дзеліцца па дзесяткі.

Другая сігнальная сістэма — гукавая мова як уласцівая чалавеку сістэма ўмоўнарэфлекторных сувязей, што ўзнікаюць пры ўздзеянні моўных сігналаў і служаць асновай абстрактнага мыслення.

Дысперсная сістэма — рэчыва ў выглядзе дробных часцінак разам з тым асяроддзем, у якім яно рассеяна, напрыклад: туман, дым.

Дэцымальная сістэма класіфікацыі — тое, што і дзесятковая сістэма класіфікацыі.

Калідорная сістэма — сістэма размяшчэння пакояў у будынку, калі дзверы з усіх пакояў выходзяць у адзін вялікі калідор.

Картачная сістэма — парадак размеркавання прадуктаў харчавання, тавараў па картачках.

Ланкастэрская сістэма навучання — арганізацыя ўзаемнага навучання, калі старэйшыя вучні пад кіраўніцтвам настаўніка вучаць малодшых вучняў.

Мажарытарная сістэма — антыдэмакратычная сістэма выбараў у некаторых капіталістычных краінах, пры якой лічацца толькі галасы, пададзеныя за кандыдата партыі, атрымаўшай большасць галасоў у дадзенай акрузе.

Метрычная сістэма мер — міжнародная сістэма адзінак вымярэння, у аснову якой пакладзены адзінка даўжыні — метр і адзінка масы — кілаграм.

Перыядычная сістэма (элементаў) — класіфікацыя хімічных элементаў, створаная Д.І. Мендзялеевым на аснове суадносін паміж іх атамнай вагой і ўласцівасцю рэчываў, якія ўтвараюцца гэтымі элементамі.

Прадметная сістэма навучання — сістэма навучання, пры якой кожны прадмет выкладаецца асобным выкладчыкам.

Прапарцыянальная сістэма выбараў — у буржуазных дзяржавах — парадак вызначэння вынікаў галасавання, пры якім размеркаванне мандатаў паміж партыямі, што вылучылі сваіх кандыдатаў у прадстаўнічы орган, праводзіцца ў адпаведнасці з колькасцю атрыманых імі галасоў.

Рачная сістэма — а) рака са сваімі прытокамі; б) сукупнасць рэк якой‑н. краіны, мясцовасці, часткі свету.

Сістэма роднасці — сукупнасць тэрмінаў для абазначэння розных ступеней роднасці (па крыві і па шлюбу).

Сонечная сістэма — сукупнасць нябесных цел, якая складаецца з Сонца і планет, што рухаюцца вакол яго.

Сусветная сістэма сацыялізма — сацыяльная, эканамічная і палітычная садружнасць свабодных, суверэнных народаў, аб’яднаных агульнымі інтарэсамі пабудовы камуністычнага грамадства.

Цэнтральная нервовая сістэма — асноўная частка нервовай сістэмы, якая складаецца з галаўнога і спіннога мозга.

Эндакрынная сістэма — сістэма эндакрынных залоз, залоз унутранай сакрэцыі.

[Грэч. systēma — цэлае, складзенае з частак, злучэнне.]

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)