ко́синус мат. ко́сінус, -са м.

Руска-беларускі слоўнік НАН Беларусі, 10-е выданне (2012, актуальны правапіс)

аркко́сінус

(ад лац. arcus = дуга + косінус)

мат. вугал, косінус якога прыраўноўваецца да дадзенага ліку.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

cosinus

м. [kosinus] мат. косінус

Польска-беларускі слоўнік (Я. Волкава, В. Авілава, 2004, правапіс да 2008 г.)

Ksinus

m -, - i -se матэм. ко́сінус

Нямецка-беларускі слоўнік (М. Кур'янка, 2006, правапіс да 2008 г.) 

касінусо́іда

(ад косінус + -оід)

графік трыганаметрычнай функцыі у = cos х.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

ЛАНЦУГО́ВАЯ ЛІ́НІЯ,

плоская трансцэндэнтная крывая, форму якой набывае пад уздзеяннем сілы цяжару гнуткая аднародная і нерасцягвальная важкая нітка з замацаванымі канцамі. Яе ўраўненне y = ach(x/a), дзе ch(x/a) — гіпербалічны косінус (гл. Гіпербалічныя функцыі). Выкарыстоўваецца ў разліках, звязаных з правісаннем правадоў, тросаў і інш. Паверхня, утвораная вярчэннем дугі Л.л. вакол восі Ox, наз. катэноідам.

Ланцуговая лінія y = ach(x/a).

т. 9, с. 126

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПЕРБАЛІ́ЧНЫЯ ФУ́НКЦЫІ,

функцыі, якія вызначаюцца формуламі: shx = (e​x - e​-x)/2 (гіпербалічны сінус), chx = (e​x + e​-x)/2 (гіпербалічны косінус) і інш. Уласцівасці гіпербалічных функцый вынікаюць непасрэдна з іх выяўлення праз экспаненцыяльную функцыю e​x.

Гіпербалічныя функцыі звязаны паміж сабой суадносінамі, падобнымі на суадносіны паміж трыганаметрычнымі функцыямі: ch​2x - sh​2x = 1, thx = shx/chx і г.д. Гіпербалічныя функцыі можна выразіць праз трыганаметрычныя: shx = -i sin ix, chx = cos ix і г.д. Геаметрычна гіпербалічныя функцыі атрымліваюцца пры разглядзе раўнабочнай гіпербалы x​2 - y​2 = 1 (адсюль назва), якую можна задаць параметрычнымі ўраўненнямі x = cht, y = sht, дзе t — падвоеная плошча сектара OAC, AC — дуга гіпербалы. Выкарыстоўваюцца пры рашэнні дыферэнц. ураўненняў у электратэхніцы, супраціўленні матэрыялаў, буд. механіцы і інш.

т. 5, с. 255

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 > 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)