ЗМЕ́ШАНЫ ЗДАБЫ́ТАК вектараў a, b, c, лік, роўны скалярнаму здабытку вектара a на вектарны здабытак вектараў b і c. Запісваецца ў выглядзе ( a , b , c ) = ( a , [ b , c ]) = a ( b × c ) . Лікава роўны аб’ёму паралелепіпеда, пабудаванага на вектарах a, b, c, які бярэцца са знакам плюс, калі гэтыя вектары ўтвараюць правую тройку, і са знакам мінус у процілеглым выпадку. Выкарыстоўваецца ў геаметрыі, механіцы і фізіцы. Гл. таксама Вектарнае злічэнне.

т. 7, с. 96

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b вектараў a і b — вектар, праведзены з пачатку a да канца b, калі канец a і пачатак b супадаюць. Складанне вектараў мае ўласцівасці: a + b = b + a ; ( a + b ) + c = a + ( b + c ) ; a + 0 = a ; a + (−a) = 0 ; дзе 0 — нулявы вектар, a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць ab вектараў a і b — вектар x такі, што x + b = a ; рознасць ab ёсць вектар, які злучае канец вектара b з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α a | і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a=0, то α a = 0. Уласцівасці множання вектара на лік: α ( a + b )) = αa + αb ; ( a + b )) α = a α + b α ; α ( β a ) = ( α β ) a ; 1 a = a . Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АМПЕ́РА ЗАКО́Н,

закон механічнага (пандэраматорнага) узаемадзеяння двух токаў, якія цякуць у элементарных адрэзках праваднікоў, што знаходзяцца на некаторай адлегласці адзін ад аднаго. Адкрыты А.М.Амперам (1820). Сіла dF12, якая дзейнічае на элемент аб’ёму dV2 правадніка з токам I2 з боку элемента аб’ёму dV1 правадніка з токам I1, вызначаецца формулай: dF12 = μ0 4π ( j2 × ( j1 × r12 ) ) dv1 dv2 r312 , дзе μ0магн. пастаянная, j1 і j2 — шчыльнасць эл. токаў I1 і I2, r12 — радыус-вектар, што вызначае становішча dv2 адносна dv1, j2 × ( j1 × r12 ) — падвойны вектарны здабытак вектараў j1, j2, r12.

т. 1, с. 321

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)