ГІДРААЭРАМЕХА́НІКА (ад гідра... + аэрамеханіка),

раздзел механікі, які вывучае законы руху і раўнавагі вадкасцей і газаў, а таксама іх узаемадзеянне паміж сабой і з межавымі паверхнямі цвёрдых цел. Вадкасці і газы разглядаюцца як суцэльнае асяроддзе (без уліку малекулярнай будовы). Падзяляецца на тэарэт. і эксперыментальную; уключае гідрамеханіку, аэрамеханіку, газавую дынаміку, пытанні абгрунтавання эксперыментаў і выкарыстання іх вынікаў разглядаюцца ў падобнасці тэорыі і ў мадэліраванні. Вынікі даследаванняў па гідрааэрамеханіцы выкарыстоўваюцца ў ракетна-касм., авіяц. і інш. тэхніцы, пры буд-ве суднаў, турбін, гідратэхн. збудаванняў і інш.

Станаўленне гідрааэрамеханікі як навукі звязана з працамі Л.Эйлера (атрымаў ураўненні руху ідэальнай вадкасці і неразрыўнасці ўраўненне) і Д.Бернулі (устанавіў суадносіны паміж ціскам вадкасці і яе кінетычнай энергіяй; гл. Бернулі ўраўненне). У работах Ж.Лагранжа, А.Кашы, Т.Кірхгофа, Т.Гельмгольца, Дж.Стокса, М.Я.Жукоўскага, С.А.Чаплыгіна і інш. распрацаваны аналітычныя метады даследаванняў безвіхравых і віхравых цячэнняў ідэальнай вадкасці, руху цел у вадкасцях і газах і інш. Асн. дасягненне гідрааэрамеханікі 19 ст. — пераход да даследаванняў руху рэальнай (вязкай) вадкасці, які падпарадкоўваецца ўраўненням Наўе—Стокса; ням. вучоны Л.Прандтль распрацаваў тэорыю пагранічнага слоя (1904). Тэарэт. метады гідрааэрамеханікі грунтуюцца на дакладных (ці набліжаных) ураўненнях, што апісваюць цячэнне вадкасці (газу); выкарыстанне ЭВМ дазваляе рашаць складаныя сістэмы ўраўненняў з улікам многіх фактараў.

На Беларусі праблемы гідрааэрамеханікі распрацоўваюць у Ін-це цепла- і масаабмену, Ін-це фізікі АН Беларусі, БДУ, Бел. політэхн. акадэміі.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. 4 изд. М., 1988;

Прандтль Л. Гидроаэромеханика: Пер. с нем. М., 1949;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

Б.А.Калавандзін, В.А.Сасіновіч.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАЗНА́ЎСТВА,

навука пра састаў, будову і ўласцівасці металаў і сплаваў, пра іх залежнасць (заканамернасці змен) ад вонкавых уздзеянняў (цеплавых, мех., хім. і інш.). Асн. практычная задача М. — пошук аптымальных саставаў і метадаў апрацоўкі сплаваў для атрымання патрэбных (зададзеных) уласцівасцей. М. ўмоўна падзяляюць на тэарэтычнае, якое разглядае агульныя заканамернасці будовы і працэсаў, што адбываюцца ў металах і сплавах пры розных уздзеяннях, і прыкладное, якое вывучае тэхнал. працэсы апрацоўкі (тэрмічная апрацоўка, ліццё, апрацоўка металаў ціскам), а таксама канкрэтныя класы метал. матэрыялаў. Састаўной ч. М. з’яўляецца металаграфія.

М. развіваецца з 2-й пал. 19 ст. Яго заснавальнікамі лічацца Дз.К.Чарноў і П.П.Аносаў. Развіццю М. спрыяла адкрыццё ў 1869 перыядычнага закону Дз.І.Мендзялеева, што дазваляе прадбачыць уласцівасці як чыстых металаў, так і сплаваў. Станаўленню М. спрыялі працы Ф.Асмонда і А.Партэвена (Францыя), Г.Тамана (Германія), У.Робертс-Аўстэна (Вялікабрытанія) Г.Хоу (ЗША) і інш. Значны ўклад у развіццё М. зрабілі рас. вучоныя Г.В.Курдзюмаў, А.А.Бочвар, А.А.Байкоў і інш.

На Беларусі работы ў галіне М. вядуцца ў Ін-це фізікі цвёрдага цела і паўправаднікоў, Фізіка-тэхнал. ін-це Нац. АН, БПА, інш. ВНУ і галіновых НДІ. Распрацоўваюцца пытанні павышэння якасці металапрадукцыі, удасканалення тэхналогіі яе апрацоўкі, укаранення новых спосабаў уздзеяння на структуру і ўласцівасці металаў і сплаваў, стварэння новых матэрыялаў і інш. Важкі ўклад у развіццё М. зрабілі працы бел. вучоных Г.А.Анісовіча, С.А.Астапчыка, С.І.Губкіна, К.В.Горава, Я.Р.Канавалава, В.П.Севярдэнкі, А.В.Сцепаненкі, В.М.Чачына і інш.

Літ.:

Бочвар А.А. Металловедение. 5 изд. М., 1956;

Болховитинов Н.Ф. Металловедение и термическая обработка. 6 изд. М., 1965;

Структура и свойства металлов и сплавов. Мн., 1974.

А.П.Ласкаўнёў.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МО́ЛАТ,

1) машына ўдарнага дзеяння для апрацоўкі метал. загатовак ціскам. Мае ўдарную ч. (поршань, шток, бабу), масіўную аснову — шабат, што ўспрымае ўдар, станіну, прывод і механізм кіравання. Бываюць парапаветраныя, пнеўматычныя, гідраўлічныя, мех. і інш. Выкарыстоўваюцца для коўкі (ковачныя М.) і аб’ёмнай ці ліставой штампоўкі (штамповачныя М.).

Рычажныя М. з ручным прыводам вядомыя з 13—14 ст. У пач. 16 ст. з’явіліся М. з прыводам ад вадзянога колат.зв. сярэднебойныя (Германія) і хваставыя (Францыя, Італія, Вялікабрытанія). Пазней узніклі т.зв. лабавыя і таўкачовыя, а таксама М. інш. канструкцый. У сярэдзіне 18 ст. сталі ўжываць М. з паравым прыводам. Першы паравы М., у якім пара непасрэдна прыводзіла ў рух рухомыя часткі, сканструяваў англ. машынабудаўнік Дж.Несміт (патэнт 1842). У пач. 20 ст. пачалі выкарыстоўваць М. з электрапрыводам, у 1940-я г. — выбуховыя, у 1950-я г. — высокахуткасныя газавыя.

2) Буд. машына для забівання ў грунт паляў, шпунтоў і інш., разнавіднасць палябойнага абсталявання. Бываюць ударнага і вібрацыйнага (гл. Вібрамолат) дзеяння; парапаветраныя, дызельныя (гл. Дызель-молат) і мех. (з прыводам ад лябёдкі). Выкарыстоўваюцца ў мостабудаванні, гідратэхн., дарожным, прамысл. і інш. буд-ве.

3) Ручны інструмент для коўкі металаў. Малыя М. наз. ручнікамі, вял. цяжкія — кувалдамі (гл. ў арт. Кавальскі інструмент).

У.М.Сацута.

Схемы асноўных тыпаў молатаў: а — парапаветранага; б — пнеўматычнага; в — гідраўлічнага; г — механічнага з гнуткай сувяззю; д — які працуе па цыкле рухавіка ўнутранага згарання; е — электрамагнітнага; 1 — поршань; 2 — шток; 3 — баба; 4 — накіравальныя станіны; 5 — верхні баёк (ці штамп); 6 — ніжні баёк (ці штамп); 7 — шабот; 8 — гідрацыліндр; 9 — рэмень; 10 — электрамагніт.

т. 10, с. 514

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

сці́снуцца, ‑нуся, ‑нешся, ‑нецца; зак.

1. Зменшыцца ў аб’ёме пад ціскам; згусціцца. Спружына сціснулася. Газы пад поршнем сціснуліся. // Разм. Скараціцца. Тэрміны сціснуліся, адпадае рад намечаных намі мерапрыемстваў. Шынклер.

2. Размясціцца шчыльна, сабрацца ў адным месцы, стоўпіцца. Сціснуліся, як селядцы ў бочцы.

3. Звузіцца (аб якой‑н. прасторы). Без таго вузкая стужка шашы нібы зусім сціснулася ў белай акантоўцы прыдарожных слупоў. Асіпенка.

4. Сабрацца ў камяк, скурчыцца; сагнуцца. Вожык так моцна сціснуўся, што ліс ніяк не мог даць яму рады. Ляўданскі. Таня сціснулася на возе ў камяк, падк[у]рчыўшыся і ўгнуўшы галаву. Пташнікаў. [Вася:] — А раз нехта ля куста стаяў, я сціснулася ўся, ляжу і не дыхаю. Быкаў.

5. Шчыльна злучыцца (пра губы, пальцы і пад.). У першую хвіліну .. [Нікіцін] здзівіўся, а потым зазлаваў, што аж рукі сціснуліся ў кулакі. Гурскі. Бушмаравы вочы ў той жа момант зажмурыліся, губы сціснуліся. Чорны. // Зблізіцца, насупіўшыся (пра бровы). [Лена:] — Ты не будзеш гневацца, калі я напішу Мікалаю пісьмо? — У Андрэя, як ад удару, сціснуліся бровы. Скрыган.

6. перан. Адчуць унутраны цяжар (у грудзях, горле). Але Косцік не чуў, што гаварыў Воўка. У грудзях у яго ўсё сціснулася, вочы заслаў нейкі туман. Арабей. // Адчуць боль пад уплывам якога‑н. пачуцця (пра душу, сэрца). У Віці сціснулася сэрца ад жалю і крыўды. Чарнышэвіч. Ганна не апусціла галавы, не разгубілася, а толькі сціснулася душой. Савіцкі.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

МАДЭЛІ́РАВАННЕ ў навуцы і тэхніцы,

1) даследаванне складаных фіз. працэсаў, з’яў, аб’ектаў шляхам пабудовы і вывучэння іх мадэлей. Грунтуецца на падобнасці тэорыі і размернасцей аналізе.

Мадэль аб’екта, геаметрычна падобная да арыгінала, мае паменшаны або павялічаны памер, а мадэль працэсу (з’явы) можа адрознівацца ад рэальнага працэсу колькаснымі фіз. характарыстыкамі (магутнасцю, энергіяй, ціскам, шчыльнасцю асяроддзя, амплітудай ваганняў, сілай узаемадзеяння, скорасцю і інш.). Падобнымі наз. з’явы, у якіх усе працэсы (поўная падобнасць) ці найб. важныя пры пэўным даследаванні (лакальная падобнасць) адрозніваюцца ад параметраў другой з’явы ў пэўную колькасць разоў. Найб. пашырана М. гідрааэрамех з’яў, мех. уласцівасцей канструкцый і збудаванняў, цеплавых і аэрадынамічных працэсаў, натурных умоў функцыянавання складаных тэхн. сістэм. М. шырока карыстаюцца ў буд. справе, гідраўліцы і гідратэхніцы, авіяцыі, ракетнай і касм. тэхніцы, у судна-, прылада- і машынабудаванні, нафта- і газаздабычы, цепла- і электратэхніцы (напр., М. электраэнергет. сістэм), навук. даследаваннях (фіз. эксперыментах) і інш. З паяўленнем ЭВМ пашырылася т.зв. аналагавае М. з выкарыстаннем спецыяльна сканструяваных для гэтага аналагавых вылічальных машын, якія мадэліруюць суадносіны паміж бесперапынна зменнымі велічынямі (машыннымі пераменнымі) — аналагамі адпаведных зыходных пераменных. Вядучае месца сярод інш. метадаў даследаванняў належыць матэматычнаму мадэліраванню з дапамогай лічбавых электронных вылічальных машын, пры якім даследаванне рэальных з’яў зводзіцца да рашэння адпаведных матэм. задач. Увядзенне ў практыку ЭВМ і машыннае, або кібернетычнае, М. (жывых сістэм, інж сетак, працэсаў распазнавання, сістэмы «чалавек—машына» і інш.) дазваляе вывучаць складаныя сістэмы і з’явы без пабудовы іх фіз. мадэлей.

2) Выраб мадэлей новых прамысл. вырабаў, якія плануецца выпускаць, для адпрацоўкі іх аптымальнай канструкцыі і формы; адзін з асн. метадаў мастацкага канструявання.

3) Выраб мадэлей самалётаў, суднаў і інш. у спартыўных (гл. Мадэлізм спартыўны), доследных і навуч. мэтах (дэманстрацыйнае М.).

Літ.:

Чавчанидзе В.В., Гельман О.Я. Моделирование в науке и технике. М., 1966;

Полисар Г.Л. Моделирование. М., 1963;

Новик И.Б. О моделировании сложных систем. М., 1965;

Седов Л.И. Методы подобия и размерности в механике. 10 изд. М., 1987.

У.М.Сацута.

т. 9, с. 494

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЫШ’ЯКУ́ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць мыш’як. Найб. шырока выкарыстоўваюць аксіды і халькагеніды мыш’яку, арсеніды і шматлікія мыш’якарганічныя злучэнні.

Мыш’яку аксіды — злучэнні мыш’яку з кіслародам. Сэсквіаксід (мыш’яковісты ангідрыд ці белы мыш’як) As2O3 — белае цвёрдае рэчыва. Пры растварэнні ў вадзе ўтварае не вылучаныя ў свабодным стане ортамыш’яковістую H3AsO3 і металамыш’яковістую HAsO2 к-ты; пры ўзаемадзеянні са шчолачамі ўтварае арсеніты. Тэхн. атрымліваюць акісляльным абпалам сульфідных мінералаў мыш’яку. Выкарыстоўваюць для атрымання мыш’яку і яго злучэнняў, кансервавання скуры і футра, у вытв-сці аптычнага шкла, як інсектыцыд і некратызавальны лек. сродак. Аксід мыш’яку(V), ці мыш’яковы ангідрыд As2O5 — бясколерныя крышталі. Пры награванні раскладаецца на As2O3 і кісларод. Добра раствараецца ў вадзе, утварае ортамыш’яковую к-ту H3AsO4, солі якой наз. арсенатамі. Выкарыстоўваюць як гербіцыд, антысептык для прамочвання драўніны. Мыш’яку гідрыд (арсін, мыш’яковісты вадарод) AsH3 — газ без колеру і паху (часам мае часночны пах, абумоўлены наяўнасцю прадуктаў частковага акіслення AsH3). Пры т-ры каля 500 °C раскладаецца. Выкарыстоўваюць для атрымання мыш’яку высокай чысціні, легіравання паўправадніковых матэрыялаў мыш’яком. Мыш’яку халькагеніды, злучэнні мыш’яку з серай — сульфіды As2S3 (у прыродзе — мінерал аўрыпігмент), As4S4 (мінерал рэальгар), As4S3 (мінерал дымарфіт) i As2S5, з селенам — селеніды As2Se3 і As4Se4, з тэлурам — тэлурыд As2Te3. Усе халькагеніды, акрамя As2S5 (аморфнае рэчыва аранжавага колеру, крышталізуецца пад высокім ціскам), крышт. рэчывы. Устойлівыя ў паветры, не раствараюцца ў вадзе, добра раствараюцца ў растворах шчолачаў. As2S3, As2Se3 i As2Te3паўправаднікі. Атрымліваюць сплаўленнем элементаў у вакууме ці інертным асяроддзі. Выкарыстоўваюць як кампаненты халькагеніднага шкла, для вырабу валаконных святлаводаў у інфрачырв. вобласці спектра і інш. Усе растваральныя ў вадзе і слабакіслым асяроддзі (напр., страўнікавы сок) М.з. надзвычай атрутныя; злучэнні As(III) больш атрутныя за злучэнні As(V), асабліва небяспечныя AsH3 і AS2O3. ГДК мыш’яку і М.з. у паветры (у пераліку на мыш’як) 0,5 мг/м³, для AsH3 — 0,1 мг/м³.

А.П.Чарнякова.

т. 11, с. 55

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГРА́ФІЯ (ад металы + ...графія),

раздзел металазнаўства, які вывучае структуру металаў і сплаваў з дапамогай аптычнай і электроннай мікраскапіі, дыфракцыі рэнтгенаўскіх прамянёў. Даследуе заканамернасці ўтварэння структуры, яе змен пад уплывам знешніх уздзеянняў.

Вывучэнне паверхні металу няўзброеным вокам, праз лупу або мікраскоп з павелічэннем да 10 разоў дазваляе выявіць макраструктуру (крышталічную, хім. або мех. неаднастайнасць у выглядзе буйных зярнят, дэфектаў і дамешкаў). Даследаванне паліраванай і траўленай паверхні пры дапамозе мікраскопа з павелічэннем у 50—1500 разоў дазваляе выявіць мікраструктуру (памеры і формы зярнят, размеркаванне структурных фаз, уключэнняў і дэфармацый). Металаграфскае траўленне (уздзеянне кіслотным і інш. актыўным рэагентам) дае магчымасць устанавіць унутр, структурную будову сплаву. З дапамогай трансмісійнага мікраскопа вядуць электронна-мікраскапічнае даследаванне (выяўляюць фрагменты структуры памерам у некалькі нанаметраў, назіраюць скопішчы дыслакацый і скажэнняў крышт. рашоткі); электроннага сканіруючага мікраскопа — атрымліваюць відарысы дэфектаў структуры з вял. глыбінёй рэзкасці пры павелічэнні да 20 тыс. разоў (вывучаюць паверхні разбурэння, аб’ёмныя ўключэнні і інш.); рэнтгенаўскага дыфрактометра — атрымліваюць інфармацыю аб крышталеграфічных параметрах асобных фаз, унутр. напружаннях, раствораных у металах атамах. Адначасова з металаграфскімі даследаваннямі будовы металаў і сплаваў вывучаюць умовы, што выклікаюць змену іх унутр. структуры (уздзеянне награвання і ахаладжэння, пластычнай дэфармацыі, адпачыну, рэкрышталізацыі, спякання, насычэння хім. элементамі і інш.), а таксама даследуюць фіз. (мех.) уласцівасці. Даныя выкарыстоўваюць для вывучэння працэсаў атрымання метал. матэрыялаў з зададзенымі ўласцівасцямі. М. выкарыстоўваецца як адзін з метадаў кантролю якасці пры ліцці, тэрмаапрацоўцы, апрацоўцы ціскам, зварцы і інш. Першыя даследаванні структуры з выкарыстаннем аптычнага мікраскопа праведзены ў 1931 П.А.Аносавым.

На Беларусі М. выкарыстоўваюць пры распрацоўцы новых матэрыялаў у Фізіка-тэхн. ін-це Нац. АН Беларусі, Бел. навукова-вытв. канцэрне парашковай металургіі, БПА, у металургічнай і металаапрацоўчай прам-сці.

Літ.:

Смолмен Р., Ашби К. Современная металлография: Пер. с англ. М., 1970;

Лившиц Б.Г. Металлография. 3 изд. М., 1990;

Приборы и методы физического металловедения: Пер. с англ. Вып. 1—2. М., 1973—74.

Г.М.Гайдалёнак.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

шыпе́ць, ‑плю, ‑піш, ‑піць; незак.

1. Утвараць глухія гукі, якія нагадваюць доўгі гук «ш-ш». Сярод падворка гусак грозна шыпеў на курэй. Карпюк. Вожык скруціўся ў клубок, а гадзюка, якую ён схапіў за хвост, шыпіць і стараецца ўкусіць яго. Ляўданскі. Толькі шыпеў кнот у лямпе. Асіпенка. / Пра яду, якая смажыцца і пад. На патэльні шыпела смажаная рыба. Шашкоў. / Пра дрэва, якое гарыць, распалены прадмет, палітыя вадой і пад. Шыпяць кулямётаў ствалы, Аж пара над імі віецца. Бялевіч. / Пра пару, газ, паветра і пад., якія выходзяць адкуль‑н. пад ціскам. Ззаду ярасна шыпеў, аднастайна гуў гарачы газавы струмень. Гамолка. Чутно было, як надрыўна шыпела пара, нешта трашчала, скрыпела, ламалася. Лынькоў. / Пра пену, хвалі і пад. Хвалі адна за адною набягаюць на бераг, шуршаць і шыпяць у рознакаляровых каменьчыках галькі. Паслядовіч. / Пра работу якіх‑н. механізмаў. Круціліся барабаны, шыпелі кампрэсары. Шыцік. На сцяне вялікі старынны гадзіннік шыпеў і адбіваў час. Грахоўскі.

2. Вымаўляць доўгі гук «ш-ш», патрабуючы цішыні, супакойваючы каго‑н.

3. Шапялявіць, гаварыць словамі, у якіх свісцячыя вымаўляюцца як шыпячыя гукі. — Бешкарышна, Гурновіч, шама рашай, шама... — у яго [Садоўнікава], наадварот, усе свісцячыя гукі шыпяць. Васілевіч.

4. Разм. Гаварыць здушаным, сіплым голасам, у якім адчуваюцца злосць, раздражненне і пад.; злоснічаць. — А ты не ведаеш? Забылася? — шыпела старая, калоцячыся, нібы ў ліхаманцы. Паўлаў. — Даўно я цябе не вучыў! — шыпеў Дракула, набіраючыся злосці. Якімовіч.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

ГІДРАЎЛІ́ЧНАЯ ТУРБІ́НА,

гідратурбіна, лопасцевы гідраўлічны рухавік, які пераўтварае мех. энергію патоку вады ў энергію вярчальнага вала. Паводле прынцыпу дзеяння падзяляюцца на актыўныя турбіны (свабоднаструменныя) і рэактыўныя турбіны (напорнаструменныя), паводле размяшчэння вала рабочага кола — на вертыкальныя, гарызантальныя і нахіленыя. Выкарыстоўваюцца пераважна на гідраэлектрычных станцыях для прывода гідрагенератара (спалучаныя з ім гідраўлічныя турбіны наз. гідраагрэгатамі).

Актыўныя гідраўлічныя турбіны падзяляюцца на каўшовыя, нахіленаструменныя і двухкратныя. У каўшовых гідраўлічных турбінах рабочым колам з’яўляецца дыск, па акружнасці якога размешчаны лопасці ў выглядзе падвойных каўшоў. Накіравальным апаратам (адным або некалькімі сопламі) струмень вады пад атм. ціскам з вял. скорасцю падаецца на лопасці (каўшы) і з малой скорасцю зыходзіць з кола. Бываюць з верт. або гарыз. валам. Магутнасцю да 250 МВт, рабочы напор 40—2000 м. Рэактыўныя гідраўлічныя турбіны паводле напрамку руху вады ў рабочым коле падзяляюцца на восевыя (паваротна-лопасцевыя, прапелерныя) і нявосевыя (радыяльна-восевыя, дыяганальныя). Маюць турбінную (спіральную) камеру (забяспечвае раўнамернае паступленне вады па ўсім контуры накіравальнага апарата), накіравальны апарат з прафіляванымі лапаткамі (рэгулюе расход вады), рабочае кола з паваротнымі або нерухомымі лопасцямі (яго вал злучаны з валам эл. генератара), адсмоктвальную трубу (змяншае скорасць вады, што паляпшае выкарыстанне энергіі вадзянога патоку). Магутнасць паваротна-лопасцевых гідраўлічных турбін да 250 МВт, рабочы напор 2—70 м; дыяганальных адпаведна да 350 МВт, 40—120 м; радыяльна-восевых — да 800 МВт і болей, 2—600 м.

Разнавіднасцю гідраўлічнай турбіны было вадзяное кола, вядомае са старажытнасці. Першая рэактыўная гідраўлічная турбіна вынайдзена франц. інж. Б.Фурнеронам у 1827, радыяльна-восевая — амер. інж. Дж.Фрэнсісам у 1855, актыўная каўшовая — амер. інж. А.Пелтанам у 1889, паваротна-лопасцевая — аўстр. інж. В.Капланам у 1913. Вытв-сць гідраўлічных турбін у б. СССР наладжана ў 1924. Найб. вядомыя гідраўлічныя турбіны фірмаў Японіі, ЗША, Францыі, Вялікабрытаніі, Германіі, Швецыі і інш. На Беларусі малыя гідраўлічныя турбіны выпускаў у 1949—58 Бабруйскі маш.-буд. з-д. ГЭС Беларусі абсталяваны верт. і гарыз. радыяльна-восевымі гідраўлічнымі турбінамі. Перспектыўныя турбіны малой (10—50 кВт) магутнасці з рабочым напорам 2—5 м.

Я.П.Забела.

т. 5, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БА́РЫЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць барый, пераважна ў ступені акіслення +2. Найб. пашыраны аксід, гідраксід барыю, солі барыю (сульфат, хларыд, карбанат, нітрат і інш.). Бясколерныя крышт. рэчывы, ядавітыя, ГДК амаль усіх барыю злучэнняў 0,5 мг/м³. Сыравінай у вытв-сці барыю злучэнняў з’яўляецца барытавы канцэнтрат (80—95% сульфату барыю), які атрымліваюць флатацыяй барыту.

Барыю аксід BaO, tпл 2017 °C, пры награванні ўзганяецца, шчыльн. 5,7·103 кг/м³. З вадой утварае гідраксід барыю, з кіслотамі, дыяксідам вугляроду — солі. Выкарыстоўваюць у вытв-сці шкла, эмаляў, каталізатараў. Пры награванні ў кіслародзе (500 °C) пераходзіць у пераксід барыю BaO2 — кампанент піратэхн. сумесяў, адбельвальнікаў для тканін і паперы. Барыю гідраксід Ba(OH)2, tпл 408 °C, гіграскапічны, насычаны раствор у вадзе наз. барытавай вадой; моцная аснова. Выкарыстоўваецца як паглынальнік дыяксіду вугляроду, для ачысткі алеяў і тлушчаў, кампанент змазак, аналітычны рэагент на сульфат- і карбанат-іоны. Барыю сульфат BaSO4, tпл 1580 °C, шчыльн. 4,5·103 кг/м³, не раствараецца ў вадзе і разбаўленых кіслотах, паглынае рэнтгенаўскае выпрамяненне. Напаўняльнік гумы і паперы (у тым ліку фотапаперы), кардону, кампанент белых мінер. фарбаў, кантрастнае рэчыва ў рэнтгенаскапічных даследаваннях страўнікава-кішачнага тракту (ГДК 6 мг/м³). Барыю карбанат BaCO3, tпл 1555 °C (у атмасферы CO2 пад ціскам 45 МПа), шчыльн. 4,25·103 кг/м³. Дрэнна раствараецца ў вадзе, рэагуе з разбаўленымі салянай і азотнай кіслотамі. Трапляецца ў прыродзе як мінерал вітэрыт. Выкарыстоўваюць у вытв-сці катодаў у электронна-вакуумных прыстасаваннях, аптычнага шкла, эмаляў, палівы, керамічных матэрыялаў, ферытаў, чырв. цэглы. Барыю хларыд BaCl2, tпл 961 °C, шчыльн. 3,83·103 кг/м³, раствараецца ў вадзе. Выкарыстоўваецца ў гарбарнай прам-сці для ўцяжарвання і асвятлення скуры, для барацьбы са шкоднікамі ў сельскай гаспадарцы, загартоўкі «хуткарэзнай» сталі. Барыю нітрат Ba(NO3)2. Існуе як мінерал нітрабарыт, выкарыстоўваецца ў эмалях і паліве, піратэхніцы. Барыю тытанат BaTiO3сегнетаэлектрык. Барыю храмат BaCrO4 і манганат BaMnO4 — адпаведна жоўты і зялёны пігменты.

Літ.:

Ахметов Т.Г. Химия и технология соединений бария. М., 1974.

Л.М.Скрыпнічэнка.

т. 2, с. 336

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)