ІЗМІ́Р (Izmir),

горад на З Турцыі, адм. цэнтр іля Ізмір, на ўзбярэжжы Эгейскага м. 1757 тыс. ж. (1990). Гал. па экспарце і другі (пасля Стамбула) па імпарце порт краіны. Вузел чыгунак і аўтадарог. Міжнар. аэрапорт. Буйны прамысл. і гандл. цэнтр с.-г. раёна (тытунь, бавоўна, вінаград, алівы, збожжавыя). Прам-сць: харч., тэкст., дывановая, хім. (суперфасфат), металургічная, маш.-буд., у т.л. суднабуд. і інш. Ун-т. Акадэмія эканомікі і гандлю. Музей. Цэнтр турызму.

Засн. як стараж.-грэч. калонія ў 2-м тыс. да н.э. пад назвай Смірна. У 575 да н.э. зруйнаваны царом Лідыі Аліятам, у 4 ст. да н.э. адбудаваны. У 27 да н.э. — 324 н.э. пад уладай рымлян, пазней — Візантыі. У канцы 11 ст. захоплены сельджукамі. У 13 ст. генуэзскі порт. У 1402—03 разрабаваны Цімурам. З 1425 у складзе Асманскай імперыі, наз. І. Моцна разбураны землетрасеннямі 1688 і 1778. З канца 18 ст. адзін з эканам. і культ. цэнтраў Турцыі. У час грэка-тур. вайны 1919—22 акупіраваны грэч. войскамі. Пасля 2-й сусв. вайны порт І. — ваен.-марская база, у горадзе размешчаны штаб камандавання сухап. сіламі НАТО у Паўд.-Усх. Еўропе. Захаваліся руіны храма 7 ст. да н.э., эліністычных тэатра і стадыёна, паблізу І. рэшткі 3 акведукаў рым. часоў.

т. 7, с. 181

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МО́ДУЛІ ПРУ́ГКАСЦІ,

велічыні, якія характарызуюць пругкія ўласцівасці (пругкасць) цвёрдых цел. Вызначаюць каэф. залежнасці паміж дэфармацыяй і прыкладзенымі мех. напружаннямі. Пры малых дэфармацыях, калі справядлівы Гука закон, гэтая залежнасць лінейная, а М.п. з’яўляюцца каэф. прапарцыянальнасці. Пры расцяжэнні-сцісканні нармальнаму напружанню адпавядае модуль падоўжанай пругкасці E (Юнга модуль), роўны адносінам нармальнага напружання σ да адноснага падаўжэння ε : E = σ ε .

Напружанаму стану чыстага зруху адпавядае модуль зруху G, роўны адносінам датычнага напружання τ да вугла зруху γ : G = τ γ ; вызначае здольнасць матэрыялу супраціўляцца зменам формы пры захаванні аб’ёму. Модуль аб’ёмнага сціскання (аб’ёмны М.п.) — адносіны ўсебаковага нармальнага напружання σ да адноснага аб’ёмнага сціскання Δ : k = σ Δ ; характарызуе здольнасць матэрыялу супраціўляцца зменам яго аб’ёму, які не суправаджаецца зменамі формы. Пругкія ўласцівасці цвёрдых цел характарызуе і каэфіцыент Пуасона γ, роўны адносінам адноснага папярочнага сціскання сячэння ε′ (пры аднабаковым расцяжэнні) да адноснага падоўжнага падаўжэння ε : γ = ε′ ε . Для аднароднага ізатропнага цела М.п. аднолькавы па ўсіх напрамках, для анізатропнага — пастаянныя E, G, γ, маюць розныя значэнні ў розных напрамках. Значэнні М.п. залежаць ад хім. саставу матэрыялаў, іх апрацоўкі, т-ры. М.п. выкарыстоўваюцца пры разліках на трываласць, жорсткасць, устойлівасць і інш.

Літ.:

Фридман Я.Б. Механические свойства металлов. Ч. 1—2. 3 изд. М., 1974.

В.К.Грыбоўскі.

т. 10, с. 511

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАКАФА́РБАВАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна хімічнай прамысловасці, якая займаецца вытв-сцю лакафарбавых матэрыялаў: лакаў і эмалей, розных фарбавальнікаў, пакосту і інш. Алейныя фарбы звычайна вырабляюцца з тонказдробненага пігменту, які размеркаваны ў масе плёнкаўтваральнага рэчыва — пакосту (раней атрымлівалі толькі з расліннага алею). Разам з натуральным пакостам наладжана вытв-сць сінт. і паўсінт. (гліфталевага) пакосту. Сыравіна для атрымання фарбавальнікаў і пігментаў разнастайная, найб. значнай з’яўляюцца араматычныя вуглевадароды — бензол, талуол, нафталін, антрацэн, ксілол і іх вытворныя. Шырока выкарыстоўваліся бітумныя лакі — растворы прыродных або штучных бітумаў ва ўайт-спірыце, ксілоле, шкіпінары і інш. растваральніках. У 1-й пал. 20 ст. з’явіліся лакі на аснове эфіраў цэлюлозы, потым — сінт. смол. Цяпер выкарыстоўваюцца лакі на аснове палімераў (алкідных смол), якія ўтвараюцца пры ўзаемадзеянні мнагаатамных спіртоў з многаасноўнымі кіслотамі.

На Беларусі лакі і фарбы пачалі вырабляць у 1920-я г., напачатку ў арцелях па вырабе хім. прадукцыі, потым на прамысл. прадпрыемствах. У 1960-х г. пабудаваны буйныя Мінскі лакафарбавы завод і Лідскі лакафарбавы завод. Усяго на Беларусі каля 30 прадпрыемстваў і вытв-сцей Л.п. У 1994 прадпрыемствы Беларусі вырабілі 16,1 тыс. т лакаў на кандэнсацыйнай аснове, 2,9 тыс. т алейных фарбаў, 3,9 тыс. т пакосту. Гл. таксама Лакафарбавыя пакрыцці.

Г.С.Смалякоў.

Да арт. Лакафарбавая прамысловасць. У цэху прыгатавання эмалей на Мінскім лакафарбавым заводзе.

т. 9, с. 106

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУ́МА (ад лац. gummi камедзь),

рызіна, вулканізат, эластычны матэрыял, які атрымліваюць вулканізацыяй каўчуку. Найважнейшая ўласцівасць гумы — высокаэластычнасць: здольнасць без значных астаткавых дэфармацый вытрымліваць шматразовыя расцяжэнні на 500—1000% у шырокім інтэрвале тэмператур.

Атрымліваюць гуму пераважна вулканізацыяй кампазітаў (гумавых сумесей), аснову якіх (звычайна 20—60% па масе) складаюць каўчукі (гл. Каўчук натуральны, Каўчукі сінтэтычныя). У састаў сумесей уваходзяць таксама вулканізуючыя агенты, напаўняльнікі, пластыфікатары, стабілізатары і інш. інгрэдыенты мэтавага прызначэння, агульная колькасць якіх можа дасягаць 15—20. Выбар каўчуку і склад гумавай сумесі абумоўлены прызначэннем, умовамі эксплуатацыі і тэхн. патрабаваннямі да вырабаў, тэхналогіяй вытв-сці. Паводле прызначэння і ўмоў эксплуатацыі адрозніваюць наступныя асн. групы: агульнага прызначэння (выкарыстоўваюць пры т-рах ад -50 да 150 °C); цеплаўстойлівую (для працяглай эксплуатацыі пры 150 — 200 °C); марозаўстойлівую (выкарыстоўваюць пры т-рах ніжэй за -50 °C); маслабензаўстойлівую; устойлівую да ўздзеяння агрэсіўных хім. рэчываў (кіслот, шчолачаў, азону); дыэлектрычную; электраправодную; магнітную; вогнеўстойлівую; радыяцыйнаўстойлівую; вакуумную; фрыкцыйную, харч. і мед. прызначэння і інш. Атрымліваюць таксама сітаватую гуму, гуму каляровую і празрыстую. Выкарыстоўваюць у тэхніцы, сельскай гаспадарцы, буд-ве, медыцыне, побыце. Асартымент гумавых вырабаў налічвае больш за 70 тыс. найменняў. Больш за палавіну аб’ёму вырабленай гумы выкарыстоўваюць у вытв-сці шын.

Літ.:

Федюкин Д.Л., Махлис Ф.А. Технические и технологические свойства резин. М., 1985.

Я.І.Шчарбіна.

т. 5, с. 529

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ОСМАРЭГУЛЯ́ЦЫЯ (ад осмас + лат. regulo накіроўваю),

сукупнасць фіз.-хім. працэсаў, якія забяспечваюць адноснае пастаянства асматычна актыўных рэчываў ва ўнутр. асяроддзі арганізма жывёл. Уласціва большасці жывёл. Існуюць 2 крайнія тыпы рэакцыі на асматычны стрэс. Пойкіласматычныя жывёлы асматычна лабільныя, асматычная канцэнтрацыя вадкасцей іх цела залежыць ад асяроддзя. Гамойасматычныя жывёлы асматычна стабільныя, пры змене навакольнага асяроддзя асматычны ціск іх унутр. вадкасцей застаецца адносна пастаянным. Адрозніваюць таксама гіперасматычных жывёл (прэснаводныя жывёлы, марскія храстковыя рыбы), якія падтрымліваюць больш высокую канцэнтрацыю асматычна актыўных рэчываў ва ўнутр. вадкасцях, чым у навакольным асяроддзі, і гіпаасматычных жывёл (марскія касцістыя рыбы, марскія паўзуны і некат. ракападобныя), што маюць ніжэйшую за асяроддзе канцэнтрацыю рэчываў. У млекакормячых асн. орган О. — ныркі, здольныя выдзяляць гіпатанічную мачу пры лішку вады і асматычна канцэнтраваную — пры яе недахопе. Прыстасаванне сістэм О. да ўмоў арыднай зоны ўключае шэраг механізмаў — павелічэнне канцэнтрацыйнай здольнасці нырак, што дазваляе абыходзіцца без пітной вады (кенгуровы пацук), павелічэнне трываласці да абязводжвання (асёл), выкарыстанне мачавой к-ты як канчатковага прадукту азоцістага абмену (паўзуны, птушкі), наяўнасць насавых залоз, якія выдзяляюць соль (некат. яшчаркі) і інш. У О. прымаюць удзел гіпаталамус, гіпофіз, наднырачнікі, шчытападобная і падстраўнікавая залозы, а таксама сенсорныя органы і рухальныя сістэмы. Эвалюцыя О. спрыяла асваенню разнастайных умоў існавання.

А.С.Леанцюк.

т. 11, с. 454

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАГЛЫНА́ННЕ СВЯТЛА́,

змяншэнне інтэнсіўнасці аптычнага выпрамянення (святла) пры праходжанні яго праз рэчыва.

Апісваецца Бугера-Ламберта-Бэра законам, які выконваецца пры адносна невял. інтэнсіўнасцях святла. Залежнасць каэфіцыента паглынання рэчыва ад даўжыні хвалі святла наз. спектрам паглынання (гл. Спектры аптычныя). Спектр паглынання адасобленых атамаў (напр., разрэджаных газаў) складаецца з вузкіх ліній, якія адпавядаюць частотам уласных ваганняў электронаў у атамах. Малекулярны спектр вызначаецца ваганнямі атамаў у малекулах і складаецца са значна больш шырокіх абласцей даўжынь хваль з істотным П.с. (палос паглынання). П.с. ў цвёрдых целах характарызуецца шырокімі абласцямі паглынання і вял. значэннем каэфіцыента паглынання. У светлавых пучках вял. інтэнсіўнасці закон Бугера—Ламберта—Бэра П.с. парушаецца (нелінейнае П.с.), што абумоўлена вял. доляй паглынальных часціц ва ўзбуджаным стане, не здольных паглынаць святло. Калі ў паглынальным асяроддзі створана інверсія заселенасці (гл. Актыўнае асяроддзе), то кожны фатон зыходнага патоку святла мае большую імавернасць выклікаць выпрамяненне такога ж фатона, чым быць паглынутым самому (гл. Вымушанае выпрамяненне). На гэтым заснаваны прынцып работы квантавых генератараў і квантавых узмацняльнікаў. Працэс П.с. выкарыстоўваецца ў розных галінах навукі і тэхнікі, на ім заснаваны многія метады колькаснага і якаснага хім. аналізу, напр., абсарбцыйны спектральны аналіз, спектрафотаметрыя, колераметрыя.

Літ.:

Степанов Б.И. Введение в современную оптику: Квантовая теория взаимодействия света и вещества. Мн., 1990.

А.Б.Гаўрыловіч.

т. 11, с. 477

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛЕНІНГРА́ДСКАЯ ВО́БЛАСЦЬ Размешчана на ПнЗ еўрап. ч. Рас. Федэрацыі. Утворана 1.8.1927. Мяжуе на ПнЗ з Фінляндыяй, на З — з Эстоніяй. Абмываецца Фінскім зал. Балтыйскага м., Ладажскім і Анежскім азёрамі. Пл. 85,9 тыс. км2. Нас. (без Санкт-Пецярбурга) 1679 тыс. чал. (1997), гарадскога 66%. Цэнтр — Санкт-Пецярбург. Найб. гарады: Гатчына, Выбарг, Ціхвін, Сасновы Бор, Волхаў, Кінгісеп.

Прырода. Берагавая лінія Фінскага зал. слаба парэзаная, за выключэннем раёна Выбаргскага зал. (шхеры). На большай ч. тэр. вобласці — нізіны (Прыбалтыйская, Прынеўская, Вуоксінская, Свірская і інш.) са слядамі дзейнасці ледавіковых вод. Паміж Фінскім зал. і Ладажскім воз. — Карэльскі перашыек з Лембалаўскім узв. (выш. да 179 м) у цэнтры. На 3 вобласці распасціраецца Балтыйска-Ладажскі ўступ (Глінт). На Пд ад яго размешчана Ардовікскае плато, у межах якога знаходзіцца Іжорскае ўзв. (выш. да 168 м). На ПнУ Вепсаўскае ўзв. (выш. да 291 м), на У Ціхвінская града. Карысныя выкапні: гаручыя сланцы, баксіты, фасфарыты, гліны, граніт, вапнякі, пяскі. Крыніцы мінер. вод. Клімат пераходны ад марскога да кантынентальнага. Сярэдняя т-ра студз. 9—11 °C, ліп. 16—17 °C. Ападкаў 750—850 мм за год. Гал. рэкі: Нява, Свір, Волхаў, Луга, Сясь, Вуокса. Каля 1800 азёр. Глебы дзярнова-падзолістыя, балотныя, алювіяльныя, ёсць урадлівыя дзярнова-карбанатныя. Пад лесам 55% тэрыторыі. На Карэльскім перашыйку Ліндулаўскі лістоўнічны гай. Балоты займаюць каля 12% тэрыторыі. Ніжнясвірскі запаведнік.

Гаспадарка. Прам-сць Л.в. цесна звязана з Санкт-Пецярбургам. У галіновай структуры прам-сці вядучае месца займаюць паліўная, электраэнергетыка, машынабудаванне, лясная, дрэваапр., цэлюлозна-папяровая. Вядзецца здабыча гаручых сланцаў і торфу. Ленінградская АЭС, 8 ГЭС (Волхаўская, Свірская, Нарвенская, Вуоксінская і інш.), Кірышская ДРЭС. Машынабудаванне і металаапрацоўка прадстаўлены суднабудаваннем і суднарамонтам, вытв-сцю вузлоў для трактароў і металаліццём, вырабам абсталявання для цэлюлозна-папяровай і хім. прам-сці, машын для жывёлагадоўлі і кормавытворчасці. Металургічны комплекс грунтуецца на перапрацоўцы баксітаў і прывазных (з Кольскагі. п-ва) нефелінаў на гліназёмных з-дах, алюмініевым камбінаце. Нафтаперапр. прам-сць. Хім. прам-сць (вытв-сць двайнога суперфасфату, амафосу, сернай кіслаты, перапрацоўка сланцаў, быт. хімія, лесахім. прадукты). Развіта лясная, дрэваапр., цэлюлозна-папяровая прам-сць; лёгкая і харч. (у т.л. рыбная і рыбакансервавая) галіны. Прам-сць буд. матэрыялаў. Сельская гаспадарка прыгараднага тыпу. Вядучая галіна — жывёлагадоўля, пераважна малочна-мясная, свінагадоўля (племянныя пароды), птушкагадоўля. Зверагадоўля (блакітны пясец, норка). Конегадоўля. Пад с.-г. ўгоддзямі 745,4 тыс. га, у т.л. пад ворнымі землямі 423,8 тыс. га. У раслінаводстве каля ​2/з пасяўных плошчаў пад кармавымі культурамі. Вырошчваюць бульбу, агародніну, са збожжавых сеюць жыта, авёс, ячмень. Даўж. чыгунак 2780 км. Асн. чыг. вузлы: Санкг-Пецярбург, Выбарг, Гатчына. Даўж. аўтадарог з цвёрдым пакрыццём 10 тыс. км. Суднаходства па Волга-Балтыйскім водным шляху, Беламорска-Балтыйскім і Сайменскім каналах, па Ладажскім і Анежскім азёрах, рэках Нява, Свір і інш. Марскія парты: Санкт-Пецярбург, Выбарг. Развіты трубаправодны транспарт. Турызм, Ленінградская і Выбаргская курортныя зоны.

В.М.Корзун.

т. 9, с. 202

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЕ́НСІЯ (Valencia),

горад на У Іспаніі, пры ўпадзенні р. Турыя ў Валенсійскі зал. Міжземнага м. Адм. д. аўт. вобласці Валенсія і аднайм. Правінцыі. 752,9 тыс. ж. (1991). Вузел чыгунак і аўтадарог. Марскі порт. Міжнар. аэрапорт. Судна- і маторабудаванне, вытв-сць чыгуначнага абсталявання. Пладова-агароднінная, тытунёвая, тэкст. (у т. л. джутавая), хім., дрэваапр. прам-сць. Цэнтр с.-г. раёна (цытрусавыя, агародніна, рыс). Саматужныя промыслы. 2 ун-ты (адзін з іх з 1500). Музей прыгожых мастацтваў (з археал. музеем). Арх. помнікі 13—18 ст.

Засн. ў 2 ст. да н.э. рымлянамі. У 11 ст. цэнтр аднаго з араб. эміратаў. У 1238 адваявана ў арабаў і стала сталіцай каралеўства Валенсія. У 1808—12 змагалася з франц. войскамі, у 1812—13 пад уладай французаў. У грамадз. вайну 1936—39 у Валенсіі знаходзіўся рэсп. ўрад (1936—37, 1939).

Унутры бульварнага кальца (на месцы стараж. сцен) — стыхійная забудова Старога горада са шматлікімі садамі, помнікамі маўрытанскага дойлідства, з каляровай маёлікавай абліцоўкай, цэрквамі і палацамі, упрыгожанымі багатай скульпт. разьбой. Гатычны сабор (13—18 ст.; інтэр’ер у стылі «чурыгерэска», 17—18 ст.), шаўковая біржа «Лонха дэ Седа» (15 ст.), Калехіо дэль Патрыярка (1586—97, праект арх. Х.Б. дэ Эрэры), палац Агуас (цяпер Музей керамікі; 1740—46). На Пд ад Старога горада — рэгулярная забудова раёнаў 19—20 ст. Манум. скульптура 19—20 ст.

т. 3, с. 479

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫНО́ІДЫ, актыніды,

сям’я з 14 хімічных радыеактыўных элементаў VII перыяду сістэмы элементаў з ат. н. 90—103: торый, пратактыній, уран, нептуній, плутоній, амерыцый, кюрый, берклій, каліфорній, эйнштэйній, фермій, мендзялевій, нобелій і лаўрэнсій. Уран, торый, менш пратактыній ёсць у прыродзе, астатнія актыноіды (наз. трансуранавыя элементы) атрыманы штучна ў выніку ядз. пераўтварэнняў. Вядучая роля ў сінтэзе і вывучэнні актыноідаў належыць Г.Сібаргу. Актыноіды — серабрыста-белыя металы высокай шчыльнасці (да 2∙10​4 кг/м³). Найб. легкаплаўкія нептуній і плутоній, tпл — 640 °C, астатнія плавяцца пры т-ры больш за 1000 °C. Актыноіды рэакцыйна-здольныя, у здробненым стане пірафорныя, лёгка рэагуюць з вадародам, кіслародам, азотам, серай, галагенамі, утвараюць комплексныя злучэнні. Блізкасць хім. уласцівасцяў актыноідаў паміж сабой і з лантаноідамі звязана з падабенствам канфігурацый вонкавых электронных абалонак іх атамаў. Практычна выкарыстоўваюцца торый, уран, плутоній; плутоній-238, кюрый-244 — у вытв-сці ядз. крыніц эл. току бартавых касм. сістэм. Некаторыя нукліды актыноідаў — у медыцыне, дэфектаскапіі, актывацыйным аналізе, нукліды урану-235, плутонію-239 — паліва ў ядз. энергетыцы, крыніца энергіі ў ядз. зброі. Актыноіды і іх злучэнні надзвычай таксічныя, што абумоўлена іх радыеактыўнасцю.

Літ.:

Сиборг Г.Т., Кац Дж.Д. Химия актинидных элементов: Пер. с англ. М., 1960;

Келлер К. Химия трансурановых элементов: Пер. с англ. М., 1976;

Лебедев Н.А., Мясоедов Б.Ф. Последние достижения в аналитической химии трансурановых элементов // Радиохимия. 1982. Т. 24, вып. 6.

т. 1, с. 213

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)