ГІДРАЛО́ГІЯ (ад гідра... + ..логія),

навука пра прыродныя воды, іх пашырэнне, уласцівасці, працэсы і з’явы, што ў іх адбываюцца. Прадмет вывучэння гідралогіі — водныя аб’екты: акіяны, моры, рэкі, азёры, вадасховішчы, сажалкі, балоты, вільгаць, што назапашана ў снегавым покрыве і ледавіках, грунтавыя і падземныя воды. Падзяляецца на акіяналогію, гідралогію сушы і гідрагеалогію, у якой да гідралогіі належаць раздзелы аб рэжыме падземных вод. Цесна звязана з навукамі геагр., геал. і біял. кірункаў. Вывучае кругаварот вады на Зямлі, прасторава-часавыя ваганні гідралагічных элементаў (узроўню, расходаў, т-ры вады і інш.), уплыў гасп. дзейнасці чалавека на гідрасферу і працэсы ў ёй і інш. Практычнае значэнне гідралогіі ў ацэнцы і прагнозе стану водных рэсурсаў, абгрунтаванні рацыянальнага іх выкарыстання.

Тэрмін «гідралогія» з’явіўся ў канцы 17 ст. (Германія). Спачатку гідралогія развівалася як апісальныя галіны фіз. геаграфіі, гідратэхнікі, геалогіі, навігацыі. Як сістэма навук. ведаў аформілася ў пач. 20 ст. (1915, В.Р.Глушкоў). Пачатак гідралагічнага вывучэння тэр. Беларусі далі працы Зах. экспедыцыі па асушэнні балот Палесся пад кіраўніцтвам І.І.Жылінскага (1873) і навігацыйна-апісальнай камісіі Мін-ва шляхоў зносін (1875).

На Беларусі даследаванні ў галіне гідралогіі праводзяць Камітэт па гідраметэаралогіі (Гідраметэаралагічная служба), Цэнтр. НДІ комплекснага выкарыстання водных рэсурсаў, Ін-т праблем выкарыстання прыродных рэсурсаў і экалогіі АН, БДУ, Белдзіправадгас і інш. Праводзяцца экспедыцыйныя і лабараторныя даследаванні асобных тэр. і водных аб’ектаў. Вывучаюцца антрапагенныя змены ў гідралагічным рэжыме, распрацоўваюцца меры па ахове гідрасферы. Значны ўклад у развіццё гідралогіі зрабілі бел. вучоныя С.Х.Будыка, А.Р.Булаўка, Д.А.Дановіч, В.В.Дрозд, А.Д.Дубах, П.А. Дудкін, А.І.Івіцкі, П.А.Кісялёў, І.М.Ліўшыц, В.Ф.Шабека, В.М.Шырокаў, В.П.Якушка.

Літ.:

Калинин Г.П. Проблемы глобальной гидрологии. Л., 1968;

Чеботарев А.И. Общая гидрология. 2 изд. Л., 1975;

Плужников В.Н., Макаревич А.А. Итоги гидрологических исследований в Беларуси // Развіццё геаграфіі Беларусі: вынікі, прабл., перспектывы: Тэз. дакл. навук. канф. Мн., 1994.

А.А.Макарэвіч.

т. 5, с. 228

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІК у матэматыцы,

адна з асн. матэм. абстракцый, звязаная з выражэннем колькаснай характарыстыкі прадметаў. У самым простым выглядзе паняцце Л. ўзнікла ў першабытным грамадстве і вызначалася неабходнасцю правядзення падлікаў і вымярэнняў у практычнай дзейнасці чалавека. Потым Л. становіцца асн. паняццем матэматыкі і далейшае развіццё гэтага паняцця звязана з вывучэннем яго агульных заканамернасцей (гл. Лікаў тэорыя).

Паняцце натуральных Л. (1, 2, 3, ...) узнікла ў глыбокай старажытнасці з патрэбы параўноўваць і колькасна характарызаваць (лічыць) розныя мноствы прадметаў. З узнікненнем пісьменства Л. пазначалі рыскамі на матэрыяле, які служыў для запісу, напр. папірусе, гліняных таблічках. Пазней уведзены інш. знакі для абазначэння вял. лікаў. З цягам часу паняцце натуральнага Л. набыло больш абстрактную форму, якая ў вуснай мове перадаецца словамі, на пісьме — спец. знакамі. Важным крокам з’яўляецца асэнсаванне бясконцасці натуральнага раду Л., што адлюстравана ў помніках антычнай матэматыкі, працах Эўкліда і Архімеда. Паняцце аб адмоўных Л. узнікла ў 6—11 ст. у Індыі. Аналіз аперацый складаннЯ, адымання, множання і дзялення Л. спрыяў узнікненню навукі пра Л.арыфметыкі. Узнікненне дробавых (рацыянальных) Л. звязана з патрэбамі праводзіць вымярэнні. Напр., даўжыня вымяралася адкладаннем адрэзка, прынятага за адзінку; аднак адзінка вымярэння не заўсёды ўкладвалася цэлую колькасць разоў, што вяло да дзялення цэлага на часткі. Патрэба ў дакладным выражэнні адносін велічынь (напр., адносіны дыяганалі квадрата да яго стараны) прывяла да ўводу ірацыянальных Л. Пры рашэнні лінейных і квадратных ураўненняў паводле фармальных правіл іншы раз атрымліваліся адмоўныя і ўяўныя Л., якім быў нададзены строгі сэнс — узнікла алгебра. Неабходнасць вывучаць фіз. працэсы, неперарыўныя ў прасторы і часе (напр., рух цела), стымулявала ўвядзенне сапраўдных Л. і паняцця лікавай прамой, што з’явілася асновай стварэння матэм. аналізу. Далейшае развіццё паняцця Л. прывяло да камплексных лікаў, гіперкамплексных лікаў, р-адычных лікаў.

Літ.:

Нечаев В.И. Числовые системы. М., 1975;

Бейкер А. Введение в теорию чисел: Пер. с англ. Мн., 1995.

В.І.Бернік.

т. 9, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАРСКА́Я АВІЯ́ЦЫЯ,

род сіл ВМФ, прызначаны для пошуку і знішчэння з паветра сіл флоту праціўніка, прыкрыцця сваіх караблёў ад варожай авіяцыі, вырашэння інш. задач, у т.л. для дастаўкі марской пяхоты.

М.а. з’явілася ў пач. 20 ст., у т.л. ў 1911—12 у Расіі, у 1919—21 у Польшчы. На тэр. Беларусі па адной авіяэскадрыллі (складаліся з развед. гідрасамалётаў і знішчальнікаў з колавым шасі) для вядзення паветр. разведкі, карэкціроўкі агню манітораў і кананерскіх лодак, бамбардзіроўкі рачных караблёў, канвояў, войск праціўніка і г.д. мелі Пінскія ваен. флатыліі: польская (1928—37, да 10 самалётаў) і савецкая (1940—41, 15—18 самалётаў). У 1930-я г. група гідрасамалётаў (базіравалася ў прырэчнай паласе і ў партах бас. Дняпра) прыдавалася сав. Дняпроўскай ваен. флатыліі. У Вял. Айч. вайну сярод сав. марскіх лётчыкаў вызначыліся беларусы М.В.Аўдзееў, М.У.Барысаў, Ц.С.Жучкоў, І.Б.Катунін, М.А.Кісляк, Я.Г.Навіцкі, У.А.Скугар і інш. Да пач. 1990-х г. у раёне г. Быхаў Магілёўскай вобл. базіравалася стратэг. авіяцыя Балт. флоту.

Сучасная М.а. падзяляецца на ракетаносную, процілодачную, знішчальную, штурмавую, развед. і дапаможнага прызначэння (радыёлакацыйнага дазору, радыёэлектроннага процідзеяння, запраўкі самалётаў палівам у паветры, тралення мін, пошукава-выратавальная, трансп. і сувязі). Адрозніваюць М.а. базавага і карабельнага (на авіяносцах, верталётаносцах і інш.) базіравання. Далейшае развіццё М.а. ідзе па шляху ўдасканалення лятальных апаратаў, павелічэння скорасці, далёкасці і даўжыні палёту, яго аўтаматызацыі, стварэння сродкаў пошуку марскіх і наземных цэлей на новых фіз. прынцыпах, распрацоўкі высокадакладнай дальнабойнай зброі з моцнымі баявымі зарадамі і інш.

Літ.:

Брусенцев Н.А. Военно-морская авиация. М., 1976;

Olejko A. Rzeczna eskadra lotnicza Flotylli Pińskiej. Pruszków, 1994.

У.Я.Калаткоў, Р.К.Паўловіч.

Да арт. Марская авіяцыя: 1 — разведвальны гідрасамалёт тыпу Р-5 Дняпроўскай ваеннай флатыліі (намаляваны без узбраення); 2 — цяжкі мнагамэтавы верталёт Ка-27 (Расія); 3 — пошукава-выратавальны верталёт-самалёт HV-22 «Оспры» для ВМФ (ЗША).

т. 10, с. 131

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕЎРАПАТАЛО́ГІЯ (ад неўра... + паталогія),

неўралогія клінічная, раздзел клінічнай медыцыны, які вывучае прычыны ўзнікнення, механізмы развіцця, дыягностыку, лячэнне і прафілактыку нервовых хвароб.

Захворванні нерв. сістэмы апісаны ўжо ў працах Гіпакрата, Цэльса і інш. У самаст. галіну медыцыны вылучылася ў сярэдзіне 19 ст., у Расіі — з прац А.Я.Кажэўнікава. які ў 1869 арганізаваў адну з першых у свеце клінік, у 1870 — першую ў Расіі кафедру нерв. хвароб.

На Беларусі заснавальнік Н. — М.Б.Кроль. Па яго ініцыятыве ў 1923 створана кафедра нерв. хвароб мед. ф-та БДУ, у 1924 — ін-т фіз. метадаў лячэння (з 1949 Неўралогіі, нейрахірургіі і фізіятэрапіі НДІ). Кіраўнікі школы бел. неўрапатолагаў (неўролагаў) — Д.А.Маркаў, І.П.Антонаў. Навук. даследаванні праводзяцца па пытаннях нейраінфекцый, эпілепсіі, дэміэлізуючых захворванняў нерв. сістэмы, сасудзістых пашкоджанняў галаўнога і спіннога мозга, грыпу і паразітарных захворванняў нерв. сістэмы, клінічных праяў паяснічнага астэахандрозу, выкарыстання выліч. тэхнікі ў Н. Вядучыя спецыялісты па Н.: В.І.Вацякоў, Я.Я.Гардзееў, С.Ё.Гінзбург, Л.С.Гіткіна, А.Л.Леановіч, М.С.Місюк, Г.К.Недзьведзь, І.І.Протас, І.Л.Саснавік, М.Ф.Філіповіч і інш. З 1957 развіваецца дзіцячая Н. (у 1980 адкрыта кафедра пры Бел. НДІ ўдасканалення ўрачоў). Вывучаюцца асаблівасці клінікі і цячэння захворванняў нерв. сістэмы ў дзяцей: неўралагічныя расстройствы пры рэўматызме і дыфузных хваробах злучальнай тканкі, гіперкінезы, эпілепсія і прыпадкі, дзіцячыя цэрэбральныя паралічы, спадчынныя хваробы, паражэнні нерв. сістэмы ў нованароджаных (Г.Г.Шанько і інш.). Працуюць (2000): 7 клінік нерв. хвароб у Мінскім, Гродзенскім, Гомельскім мед. ін-тах, Віцебскім мед. ун-це, Бел. НДІ удасканалення ўрачоў (2), Бел. НДІ неўралогіі, нейрахірургіі і фізіятэрапіі.

Літ.:

Антонов И.П., Шанько Г.Г. К истории развития невропатологии в Белоруссии за годы Советской власти // Вопросы истории медииины и здравоохранения. Мн., 1968;

Дривотинов Б.В. Неврологические нарушения при поясничном остеохондрозе. Мн., 1979;

Марков Д.А., Злотн и к Э.И., Гиткина Л.С. Инфаркт мозга. Мн., 1973;

Шанько Г.Г. Эпилепсия у детей: классификация, диагностика, лечение. Мн., 1997;

Энциклопедия детского невролога. Мн., 1993.

Г.Г.Шанько.

т. 11, с. 302

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГРА́ФІЯ (ад металы + ...графія),

раздзел металазнаўства, які вывучае структуру металаў і сплаваў з дапамогай аптычнай і электроннай мікраскапіі, дыфракцыі рэнтгенаўскіх прамянёў. Даследуе заканамернасці ўтварэння структуры, яе змен пад уплывам знешніх уздзеянняў.

Вывучэнне паверхні металу няўзброеным вокам, праз лупу або мікраскоп з павелічэннем да 10 разоў дазваляе выявіць макраструктуру (крышталічную, хім. або мех. неаднастайнасць у выглядзе буйных зярнят, дэфектаў і дамешкаў). Даследаванне паліраванай і траўленай паверхні пры дапамозе мікраскопа з павелічэннем у 50—1500 разоў дазваляе выявіць мікраструктуру (памеры і формы зярнят, размеркаванне структурных фаз, уключэнняў і дэфармацый). Металаграфскае траўленне (уздзеянне кіслотным і інш. актыўным рэагентам) дае магчымасць устанавіць унутр, структурную будову сплаву. З дапамогай трансмісійнага мікраскопа вядуць электронна-мікраскапічнае даследаванне (выяўляюць фрагменты структуры памерам у некалькі нанаметраў, назіраюць скопішчы дыслакацый і скажэнняў крышт. рашоткі); электроннага сканіруючага мікраскопа — атрымліваюць відарысы дэфектаў структуры з вял. глыбінёй рэзкасці пры павелічэнні да 20 тыс. разоў (вывучаюць паверхні разбурэння, аб’ёмныя ўключэнні і інш.); рэнтгенаўскага дыфрактометра — атрымліваюць інфармацыю аб крышталеграфічных параметрах асобных фаз, унутр. напружаннях, раствораных у металах атамах. Адначасова з металаграфскімі даследаваннямі будовы металаў і сплаваў вывучаюць умовы, што выклікаюць змену іх унутр. структуры (уздзеянне награвання і ахаладжэння, пластычнай дэфармацыі, адпачыну, рэкрышталізацыі, спякання, насычэння хім. элементамі і інш.), а таксама даследуюць фіз. (мех.) уласцівасці. Даныя выкарыстоўваюць для вывучэння працэсаў атрымання метал. матэрыялаў з зададзенымі ўласцівасцямі. М. выкарыстоўваецца як адзін з метадаў кантролю якасці пры ліцці, тэрмаапрацоўцы, апрацоўцы ціскам, зварцы і інш. Першыя даследаванні структуры з выкарыстаннем аптычнага мікраскопа праведзены ў 1931 П.А.Аносавым.

На Беларусі М. выкарыстоўваюць пры распрацоўцы новых матэрыялаў у Фізіка-тэхн. ін-це Нац. АН Беларусі, Бел. навукова-вытв. канцэрне парашковай металургіі, БПА, у металургічнай і металаапрацоўчай прам-сці.

Літ.:

Смолмен Р., Ашби К. Современная металлография: Пер. с англ. М., 1970;

Лившиц Б.Г. Металлография. 3 изд. М., 1990;

Приборы и методы физического металловедения: Пер. с англ. Вып. 1—2. М., 1973—74.

Г.М.Гайдалёнак.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАРЭ́ЗНЫ СТАНО́К,

машына для размернай апрацоўкі рэзаннем (у асн. зняццем стружкі) пераважна метал. загатовак. Бываюць універсальныя (для выканання розных аперацый на дэталях многіх найменняў), шырокага прызначэння (для выканання пэўных аперацый на дэталях многіх найменняў), спецыялізаваныя (для апрацоўкі дэталей аднаго наймення, але розных памераў), спецыяльныя (для выканання асобных аперацый пры вырабе адной дэталі).

У залежнасці ад мэтавага прызначэння, выканання адпаведных тэхнал. аперацый і металарэзнага інструменту адрозніваюць: такарныя, свідравальныя, расточныя, шліфавальныя, паліравальныя, даводачныя, заточныя, зубаапрацоўчыя, рэзьбаапрацоўчыя, фрэзерныя, стругальныя, даўбёжныя, працяжныя станкі (гл. адпаведныя арт.), а таксама разразныя, для фіз.-хім. апрацоўкі, балансіровачныя, мнагамэтавыя (апрацоўчыя цэнтры), агрэгатныя станкі. Паводле ступені аўтаматызацыі адрозніваюць М.с. з ручным кіраваннем, паўаўтаматычныя (апрацоўка адной дэталі ў аўтам. рэжыме), аўтаматычныя (апрацоўка і змена дэталей у аўтам. рэжыме). Паводле дасягальнай дакладнасці апрацоўкі адрозніваюць М.с. класаў дакладнасці: Н (нармальнага), П (павышанага), В (высокага), А (асабліва высокага), С (майстар-станкі з хібнасцю апрацоўкі 1 мкм), Т (з хібнасцю 0,3 мкм), К (з хібнасцю 0,1 мкм). Тэхн ўзровень станкоў характарызуецца паказчыкамі прызначэння, надзейнасці, эканомнага выкарыстання матэрыялаў і электраэнергіі, тэхналагічнасці, стандартызацыі і уніфікацыі. эрганамічнасці і патэнтна-прававымі.

На Беларусі розныя тыпы М.с. выпускаюць прадпрыемствы станкабудаўнічай і інструментальнай прамысловасці. Пра развіццё вытв-сці М.с. на Беларусі гл. ў арт. Станкабудаванне.

Літ.:

Чернов Н.Н. Металлорежущие станки. 4 изд. М., 1987;

Кочергин АИ., Конструирование и расчет металлорежущих станков и станочных комплексов. Мн., 1991;

Станочное оборудование автоматизированного производства. Т. 2. М., 1994;

Проектирование металлорежущих станков и станочных систем: В 3 т. Т. 1—2. М., 1994—95.

А.І.Качаргін.

Металарэзны станок: а — асноўныя вузлы (зборачныя адзінкі; 1 — базавыя дэталі, 2 — галоўны прывод, 3 — прыводы падачы і пазіцыяніравання); б — структурная схема (Iу — уваходная інфармацыя ў выглядзе чарцяжа, кіроўнай праграмы і інш.; Iв — выхадная інфармацыя пра памеры апрацаванай дэталі; 3 — загатоўкі; Д — дэталі; Е — энергія; 1—4 — падсістэмы кіравання, кантролю, маніпуліравання загатоўкамі і рэзальнымі інструментамі, апрацоўкі).

т. 10, с. 305

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МІНЕРАЛО́ГІЯ (ад позналац. minera руда + ...логія),

навука аб прыродных хім. злучэннях — мінералах. Вывучае састаў, уласцівасці, марфалогію, структуру, працэсы ўтварэння і змянення мінералаў, заканамернасці сумеснага знаходжання ў прыродзе, а таксама ўмовы і метады штучнага атрымання з мэтай іх практычнага выкарыстання. Уваходзіць у комплекс геал. навук і цесна звязана з петраграфіяй, крышталяграфіяй, геахіміяй, вучэннем аб карысных выкапнях і інш. Аб’ект даследавання ў М. — асобныя крышталі, іх агрэгаты, генетычныя сукупнасці і інш. У 2-й пал. 20 ст. сфарміраваліся раздзелы М. касмічнай і М. мантыі. Вял. значэнне мае эксперыментальная М., якая займаецца мадэліраваннем фіз.-хім. працэсаў утварэння мінералаў, іх сінтэзам.

М. — найстаражытнейшая з навук геал. цыкла. Тэрмін «М.» ўведзены ў 1636 італьян. натуралістам Б.Цэзіем. М. развівалася паралельна з горнай справай і металургіяй. Элементы мінер. ведаў трапляюцца ў натурфілосафаў (з сярэдзіны 4 ст. да н.э.). Арыстоцель вылучаў у мінер. свеце 2 класы: камяні і руды. Класіфікацыяй мінералаў займаліся Тэафраст, Пліній Старэйшы, у 10—12 ст. Біруні, Ібн Сіна, Альберг Вялікі. Накапленне ведаў аб мінералах (у 17 ст. ў працах дацкіх вучоных Э.Барталіна, Н.Стэна, англ. Р.Бойля, Р.Гука, галандскага К.Гюйгенса, у 18—19 ст.франц. Ж.Б.Рамэ дэ Ліля, Р.Ж.Гаюі, англ. У.Воластана, ням. А.Г.Вернера, рус. М.В.Ламаносава, В.М.Севергіна і інш.) прывяло да дыферэнцыяцыі М. і вылучэння з яе крышталяграфіі (18 ст.), петраграфіі (19 ст.), вучэння аб карысных выкапнях, геахіміі і металагеніі (канец 19 — пач. 20 ст.), вучэння аб каўстабіялітах (20 ст.), крышталяхіміі (сярэдзіна 20 ст.). Вял. ўклад у развіццё М. зрабілі рус. вучоныя М.І.Какшараў, П.У.Ерамееў, А.П.Карпінскі, Я.С.Фёдараў, сав. вучоныя А.Г.Бяцехцін, А.К.Болдыраў, У.І.Вярнадскі, А.М.Заварыцкі, У.М.Лодачнікаў, С.С.Смірноў, А.Я.Ферсман і інш.

На Беларусі мінералагічныя даследаванні праводзяцца паралельна з літалагічнымі, петраграфічнымі, з вывучэннем карысных выкапняў і стратыграфіі. Імі займаюцца ў ВА «Белгеалогія», Бел. н.-д. геолагаразведачным ін-це, Ін-це геал. навук Нац. АН Беларусі і інш.

Я.І.Аношка.

т. 10, с. 381

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУК,

ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.

Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.

П.С.Габец, А.Р.Хаткевіч.

т. 5, с. 522

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЬЮ́ТАН ((Newton) Ісаак) (4.1.1643, Вулстарп, каля г. Грантэм, Вялікабрытанія — 31.3.1727),

англійскі фізік, матэматык і астраном, стваральнік класічнай механікі і асноў сучаснага прыродазнаўства. Чл. Лонданскага каралеўскага т-ва (1672, з 1703 яго прэзідэнт). Замежны чл. Парыжскай АН (1699). Скончыў Трыніты-каледж Кембрыджскага ун-та (1665). У 1669—1701 заг. кафедры матэматыкі гэтага ун-та. З 1696 даглядчык, з 1699 дырэктар Манетнага двара ў Лондане. Навук. працы па механіцы, оптыцы, астраноміі, матэматыцы. Даў азначэнні зыходных паняццяў і сфармуляваў асн. законы класічнай механікі (гл. Ньютана законы механікі). Адкрыў сусветнага прыцягнення закон. Увёў тэрмін «гравітацыя» і стварыў класічную тэорыю гравітацыі. На яе аснове растлумачыў Кеплера законы, асаблівасці руху Месяца, прэцэсію Юпітэра, прапанаваў тэорыю фігуры Зямлі, тэорыю прыліваў і адліваў. У галіне оптыкі адкрыў дысперсію святла (1666), храматычную аберацыю, інтэрферэнцыю святла ў тонкіх слаях паветра (гл. Ньютана кольцы). Сканструяваў люстэркавы тэлескоп-рэфлектар (1668), вынайшаў рэфлектарны мікраскоп (1672) і секстант. Развіў карпускулярную тэорыю святла. Распрацаваў дыферэнцыяльнае і інтэгральнае злічэнні (1665—66; гл. Ньютана—Лейбніца формула), пашырыў бінаміяльную формулу на выпадак адвольных рэчаісных паказчыкаў (гл. Ньютана біном). Гал. праца Н. — «Матэматычныя асновы натуральнай філасофіі» (1687), якая стала фундаментам класічнай фізікі і вызначыла развіццё прыродазнаўства ў наступныя 2 стагоддзі. У аснову ньютанаўскай карціны свету пакладзены паняцці абс. прасторы і часу, апісанне фіз. ўзаемадзеяння праз паняцце сілы, тэорыя далёкадзеяння, а таксама філас.-тэалагічныя погляды Н. Яго імем названа адзінка сілы ў СІньютан.

Тв.:

Рус. пер. — Всеобщая арифметика или книга об арифметических синтезе и анализе. М., 1948;

Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. 2 изд. М., 1954;

Математические начала натуральной философии. М., 1989.

Літ.:

Исаак Ньютон, 1643—1727: Сб. статей к трехсотлетию со дня рождения. М.; Л., 1943;

Карцев В.П. Ньютон. М., 1987;

Вавилов С.И. Исаак Ньютон, 1643—1727. 4 изд. М., 1989.

М.М.Касцюковіч.

І.Ньютан.

т. 11, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)