ГЛУТАМІ́НАВАЯ КІСЛАТА́,

α-амінаглутаравая кіслата, HOOCCH2CH2CHNH2COOH; важнейшая заменная амінакіслата. Уваходзіць у састаў практычна ўсіх прыродных бялкоў і інш. біялагічна актыўных рэчываў (глутатыёну, фоліевай к-ты, фасфатыдаў). У свабодным стане ёсць ва ўсіх тканках жывых арганізмаў, займае ключавое становішча ў азоцістым абмене. Сукупнасць абарачальных ферментатыўных рэакцый пераносу амінагруп у жывых арганізмаў (пераамінаванне) адбываецца ў сістэме глутамінавай кіслаты — глутамін-α-кетаглутаравая к-та. Біясінтэз глутамінавай кіслаты — галоўны шлях асіміляцыі аміяку ў многіх арганізмаў. Глутамінавая кіслата ўдзельнічае ў біясінтэзе многіх заменных амінакіслот, пурынаў; у клетках ц. н. с. пераносіць іоны калію K​+ і абясшкоджвае аміяк, выконвае функцыю медыятара. Выкарыстоўваецца як смакавая дабаўка да харч. прадуктаў і як лекавы сродак.

т. 5, с. 303

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛІ́Н

(Вал, Val),

α-амінаізаваляр’янавая кіслата, (CH3)2 CHCH(NH2)—COOH, адна з незаменных амінакіслот. Уваходзіць у састаў усіх бялкоў у выглядзе L-ізамера, удзельнічае ў сінтэзе пантатэнавай кіслаты і пеніцыліну. Крышталічнае рэчыва. Добра раствараецца ў вадзе. Будову валіну вызначыў і даказаў штучным сінтэзам ням. біяхімік Э.Фішэр. Колькасць валіну ў бялку ад 4,1 (міяглабін коней) да 8% (сываратачны альбумін чалавека, казеін малака), у асобных выпадках да 13—14% (эластын злучальных тканак). Сутачная патрэбнасць дарослага чалавека ў валіне 1,6 г. Адсутнасць валіну ў ежы вядзе да адмоўнага азоцістага балансу, у выніку затрымліваецца рост, у нерв. сістэме адбываюцца дэгенератыўныя змены. Валін выкарыстоўваюць у вытв-сці граміцыдзіну.

т. 3, с. 481

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЭХАПЛО́ДНЫЯ КУЛЬТУ́РЫ,

дрэвавыя расліны, якія даюць плады пад агульнай назвай арэхі — ядомыя і пажыўныя ядры ў сухой дравяністай абалонцы. Да іх належаць: арэхі (грэцкі, маньчжурскі, пекан і інш.), ляшчына, фундук, міндаль, каштан, бук, дуб, кедравая хвоя сібірская (кедр сібірскі), фісташка, макадамія (аўстралійскі арэх), берталецыя (бразільскі, ці амерыканскі, арэх) і інш. Арэхаплодныя культуры вырошчваюць для атрымання пладоў (ядры арэхаў маюць да 77% тлушчу, да 22% бялкоў) і драўніны (ідзе на сталярныя і такарныя вырабы), як дэкаратыўныя (для зялёнага будаўніцтва). Жалуды дубоў нарыхтоўваюць для вырабу сурагату кавы. Амаль усе арэхаплодныя культуры ў дзікарослым стане растуць на вялікіх плошчах. На Беларусі пашыраны ляшчына звычайная, дубы звычайны і скальны, некаторыя віды арэхаплодных культур інтрадукаваны.

Г.У.Вынаеў.

т. 2, с. 15

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АХРЭ́М Апанас Андрэевіч

(н. 8.2.1914, в. Урэчча Вілейскага р-на Мінскай вобл.),

бел. хімік-біяарганік. Акад. АН Беларусі (1970). Д-р хім. н. (1960), праф. (1970). Засл. дз. нав. Беларусі (1983). Скончыў Бел. політэхн. ін-т (1934). З 1963 у Ін-це арган.. хіміі АН СССР, з 1972 у Ін-це фізіка-арган. хіміі АН Беларусі, у 1974—88 дырэктар Ін-та біяарган. хіміі АН Беларусі. Навук. працы па біяарган. хіміі стэроідаў, бялкоў, пептыдаў, нуклеатыдаў. Адкрыў з’яву рухомасці двайных сувязяў у спалучаных дыенавых злучэннях. Дзярж. прэмія Беларусі 1988.

Тв.:

Конформационный анализ и установление пространственной структуры белковых молекул. Мн., 1989 (разам з С.А.Шэрманам, А.М.Андрыянавым);

Стероиды: Экол. функции. Мн., 1990 (разам з М.У.Каўганка).

т. 2, с. 160

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛУТАМІ́Н,

L-p-амід-L-глутамінавай кіслаты, C5H10O3N2, заменная амінакіслата ў раслін, жывёл і мікраарганізмаў; амінакіслотны кампанент бялкоў і поліпептыдаў. У свабодным стане ў значнай колькасці ёсць у раслін, сардэчнай і шкілетных мышцах, мозгу. Важнейшае злучэнне азоцістага абмену, з дапамогай якога пераносяцца амінагрупы (пераамінаванне). Пры ўтварэнні глутаміну з глутамінавай к-ты ў раслін і многіх жывёл абясшкоджваецца таксічны аміяк. Адзін з прадуктаў першаснага звязвання малекулярнага азоту клубеньчыкавымі бактэрыямі і свабодна жывучымі азотфіксатарамі. Дае пачатак біясінтэзу шэрагу амінакіслот (трыптафану, гістыдзіну, гліцыну, аспарагіну, аланіну і інш.), пурынавых і пірымідзінавых асноў, гексозаміну, рыбафлавіну, фоліевай к-ты і інш.; можа ператварацца ў 1-кетаглутарат — прамежкавы прадукт цыкла лімоннай к-ты, які пастаўляе вуглярод на сінтэз глюкозы.

т. 5, с. 303

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГНІЕ́ННЕ,

разлажэнне азотзмяшчальных арган. злучэнняў (пераважна бялкоў) мікраарганізмамі; адыгрывае значную ролю ў кругавароце рэчываў у прыродзе. Гніенне — складаны шматступеньчаты біяхім. працэс, які залежыць ад хім. прыроды субстрату, наяўнасці кіслароду і складу мікрафлоры. На розных этапах гніення дамінуюць спецыфічныя групы мікраарганізмаў (аэробныя, факультатыўна анаэробныя, аблігатна анаэробныя бактэрыі і некат. віды грыбоў). Пры ўдзеле пратэалітычных ферментаў мікраарганізмы расшчапляюць бялкі да амінакіслот. Дэзамінаванне і дэкарбаксіліраванне амінакіслот прыводзіць да ўтварэння аміяку, серавадароду, вуглякіслага газу, арган. к-т, амінаў і інш. злучэнняў, у т. л. атрутных рэчываў (кадаверын, путрэсцін) і з непрыемным пахам (індол, скатол, меркаптаны). Гніенне адбываецца ў глебе, вадзе, у страўнікава-кішачным тракце жывёл і чалавека (прадукты гніення абясшкоджваюцца печанню і часткова выдаляюцца ныркамі). Гл. таксама Аманіфікацыя.

т. 5, с. 315

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАДАРО́ДНАЯ СУ́ВЯЗЬ,

від трохцэнтравай хімічнай сувязі тыпу A—H​δ+... B​δ-, якая ўзнікае, калі атам вадароду H адначасова злучаны з двума электраадмоўнымі атамамі A і B. З атамам A (вуглярод, азот, кісларод, сера) вадарод злучаны моцнай кавалентнай сувяззю (A—H​δ+). З атамам B (фтор, кісларод, азот, радзей хлор, сера), які мае непадзельную пару электронаў, утварае дадатковую вадародную сувязь (абазначаецца кропкамі). Вадародная сувязь на парадак слабейшая за кавалентную сувязь.

Атамы A і B могуць належаць адной (унутрымалекулярная вадародная сувязь) і розным малекулам (міжмалекулярная вадародная сувязь). Выклікае асацыяцыю аднолькавых (вада, кіслоты, спірты) ці розных малекул у асацыяты і комплексы, уплывае на крышталізацыю, растварэнне, вызначае структуру бялкоў, нуклеінавых кіслот і інш. біялагічна важных злучэнняў.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕТЫ́ЧНАЯ ІНФАРМА́ЦЫЯ,

праграма развіцця арганізма, атрыманая ад продкаў і закладзеная ў спадчынных структурах — генах. Запісана паслядоўнасцю нуклеатыдаў малекул нуклеінавых к-т (ДНК, у некат. вірусаў таксама РНК). Мае звесткі пра будову ўсіх ферментаў, структурных бялкоў і РНК клеткі, а таксама пра рэгуляцыю іх сінтэзу. Генетычная інфармацыя, якая счытваецца ў працэсе трансляцыі, складаецца са значэнняў трыплетаў генетычнага кода і ўключае знакі пачатку і заканчэння бялковага сінтэзу. У шматклетачных арганізмаў пры палавым размнажэнні генетычная інфармацыя перадаецца з пакалення ў пакаленне праз палавыя клеткі, у пракарыятычных мікраарганізмаў — праз трансдукцыю і трансфармацыю. Адрозніваюць 3 тыпы працэсаў пераносу генетычнай інфармацыі: агульны, уласцівы любым клеткам арганізма; спецыялізаваны (напр., у клетках, пашкоджаных вірусамі, генет. матэрыял якіх складаецца з РНК); забаронены перанос — працэсы, якія раней ніколі не былі зарэгістраваны (ад бялку да ДНК і РНК; ад бялку да бялку).

т. 5, с. 157

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗБО́ЖЖАВЫЯ КУЛЬТУ́РЫ,

расліны, якія вырошчваюць пераважна на збожжа — асн. прадукт харчавання чалавека. корм для жывёл і сыравіна для многіх галін прам-сці. З.к. падзяляюць на зерневыя, у т.л. крупяныя культуры (найб. пашыраны пшаніца, рыс, жыта, кукуруза, ячмень, авёс, проса, сорга, грэчка, а таксама чуміза, магар, пайза, дагуса і інш.) і бабовыя (зернебабовыя) культуры. Займаюць амаль палову ўсіх пасяўных плошчаў свету і вырошчваюцца практычна на ўсіх кантынентах. На Беларусі пад З.к. занята каля 3 млн. га, яны даюць ⅓ таварнай прадукцыі раслінаводства. З хлебных злакавых культур найб. плошчы займаюць жыта і ячмень, вырошчваюць таксама азімую і яравую пшаніцу, авёс, кукурузу (у паўд. раёнах), грэчку і проса, зернебабовыя культуры. Зерне хлебных злакаў высокапажыўнае, мае 60—80% вугляводаў, 7—20% бялкоў, 2—5% тлушчу. ферменты, вітаміны і інш., зерне бабовых — багатае бялком.

т. 7, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)