МО́ЛАТ,

1) машына ўдарнага дзеяння для апрацоўкі метал. загатовак ціскам. Мае ўдарную ч. (поршань, шток, бабу), масіўную аснову — шабат, што ўспрымае ўдар, станіну, прывод і механізм кіравання. Бываюць парапаветраныя, пнеўматычныя, гідраўлічныя, мех. і інш. Выкарыстоўваюцца для коўкі (ковачныя М.) і аб’ёмнай ці ліставой штампоўкі (штамповачныя М.).

Рычажныя М. з ручным прыводам вядомыя з 13—14 ст. У пач. 16 ст. з’явіліся М. з прыводам ад вадзянога колат.зв. сярэднебойныя (Германія) і хваставыя (Францыя, Італія, Вялікабрытанія). Пазней узніклі т.зв. лабавыя і таўкачовыя, а таксама М. інш. канструкцый. У сярэдзіне 18 ст. сталі ўжываць М. з паравым прыводам. Першы паравы М., у якім пара непасрэдна прыводзіла ў рух рухомыя часткі, сканструяваў англ. машынабудаўнік Дж.Несміт (патэнт 1842). У пач. 20 ст. пачалі выкарыстоўваць М. з электрапрыводам, у 1940-я г. — выбуховыя, у 1950-я г. — высокахуткасныя газавыя.

2) Буд. машына для забівання ў грунт паляў, шпунтоў і інш., разнавіднасць палябойнага абсталявання. Бываюць ударнага і вібрацыйнага (гл. Вібрамолат) дзеяння; парапаветраныя, дызельныя (гл. Дызель-молат) і мех. (з прыводам ад лябёдкі). Выкарыстоўваюцца ў мостабудаванні, гідратэхн., дарожным, прамысл. і інш. буд-ве.

3) Ручны інструмент для коўкі металаў. Малыя М. наз. ручнікамі, вял. цяжкія — кувалдамі (гл. ў арт. Кавальскі інструмент).

У.М.Сацута.

Схемы асноўных тыпаў молатаў: а — парапаветранага; б — пнеўматычнага; в — гідраўлічнага; г — механічнага з гнуткай сувяззю; д — які працуе па цыкле рухавіка ўнутранага згарання; е — электрамагнітнага; 1 — поршань; 2 — шток; 3 — баба; 4 — накіравальныя станіны; 5 — верхні баёк (ці штамп); 6 — ніжні баёк (ці штамп); 7 — шабот; 8 — гідрацыліндр; 9 — рэмень; 10 — электрамагніт.

т. 10, с. 514

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАДЭЛІ́РАВАННЕ ў навуцы і тэхніцы,

1) даследаванне складаных фіз. працэсаў, з’яў, аб’ектаў шляхам пабудовы і вывучэння іх мадэлей. Грунтуецца на падобнасці тэорыі і размернасцей аналізе.

Мадэль аб’екта, геаметрычна падобная да арыгінала, мае паменшаны або павялічаны памер, а мадэль працэсу (з’явы) можа адрознівацца ад рэальнага працэсу колькаснымі фіз. характарыстыкамі (магутнасцю, энергіяй, ціскам, шчыльнасцю асяроддзя, амплітудай ваганняў, сілай узаемадзеяння, скорасцю і інш.). Падобнымі наз. з’явы, у якіх усе працэсы (поўная падобнасць) ці найб. важныя пры пэўным даследаванні (лакальная падобнасць) адрозніваюцца ад параметраў другой з’явы ў пэўную колькасць разоў. Найб. пашырана М. гідрааэрамех з’яў, мех. уласцівасцей канструкцый і збудаванняў, цеплавых і аэрадынамічных працэсаў, натурных умоў функцыянавання складаных тэхн. сістэм. М. шырока карыстаюцца ў буд. справе, гідраўліцы і гідратэхніцы, авіяцыі, ракетнай і касм. тэхніцы, у судна-, прылада- і машынабудаванні, нафта- і газаздабычы, цепла- і электратэхніцы (напр., М. электраэнергет. сістэм), навук. даследаваннях (фіз. эксперыментах) і інш. З паяўленнем ЭВМ пашырылася т.зв. аналагавае М. з выкарыстаннем спецыяльна сканструяваных для гэтага аналагавых вылічальных машын, якія мадэліруюць суадносіны паміж бесперапынна зменнымі велічынямі (машыннымі пераменнымі) — аналагамі адпаведных зыходных пераменных. Вядучае месца сярод інш. метадаў даследаванняў належыць матэматычнаму мадэліраванню з дапамогай лічбавых электронных вылічальных машын, пры якім даследаванне рэальных з’яў зводзіцца да рашэння адпаведных матэм. задач. Увядзенне ў практыку ЭВМ і машыннае, або кібернетычнае, М. (жывых сістэм, інж сетак, працэсаў распазнавання, сістэмы «чалавек—машына» і інш.) дазваляе вывучаць складаныя сістэмы і з’явы без пабудовы іх фіз. мадэлей.

2) Выраб мадэлей новых прамысл. вырабаў, якія плануецца выпускаць, для адпрацоўкі іх аптымальнай канструкцыі і формы; адзін з асн. метадаў мастацкага канструявання.

3) Выраб мадэлей самалётаў, суднаў і інш. у спартыўных (гл. Мадэлізм спартыўны), доследных і навуч. мэтах (дэманстрацыйнае М.).

Літ.:

Чавчанидзе В.В., Гельман О.Я. Моделирование в науке и технике. М., 1966;

Полисар Г.Л. Моделирование. М., 1963;

Новик И.Б. О моделировании сложных систем. М., 1965;

Седов Л.И. Методы подобия и размерности в механике. 10 изд. М., 1987.

У.М.Сацута.

т. 9, с. 494

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЫШ’ЯКУ́ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць мыш’як. Найб. шырока выкарыстоўваюць аксіды і халькагеніды мыш’яку, арсеніды і шматлікія мыш’якарганічныя злучэнні.

Мыш’яку аксіды — злучэнні мыш’яку з кіслародам. Сэсквіаксід (мыш’яковісты ангідрыд ці белы мыш’як) As2O3 — белае цвёрдае рэчыва. Пры растварэнні ў вадзе ўтварае не вылучаныя ў свабодным стане ортамыш’яковістую H3AsO3 і металамыш’яковістую HAsO2 к-ты; пры ўзаемадзеянні са шчолачамі ўтварае арсеніты. Тэхн. атрымліваюць акісляльным абпалам сульфідных мінералаў мыш’яку. Выкарыстоўваюць для атрымання мыш’яку і яго злучэнняў, кансервавання скуры і футра, у вытв-сці аптычнага шкла, як інсектыцыд і некратызавальны лек. сродак. Аксід мыш’яку(V), ці мыш’яковы ангідрыд As2O5 — бясколерныя крышталі. Пры награванні раскладаецца на As2O3 і кісларод. Добра раствараецца ў вадзе, утварае ортамыш’яковую к-ту H3AsO4, солі якой наз. арсенатамі. Выкарыстоўваюць як гербіцыд, антысептык для прамочвання драўніны. Мыш’яку гідрыд (арсін, мыш’яковісты вадарод) AsH3 — газ без колеру і паху (часам мае часночны пах, абумоўлены наяўнасцю прадуктаў частковага акіслення AsH3). Пры т-ры каля 500 °C раскладаецца. Выкарыстоўваюць для атрымання мыш’яку высокай чысціні, легіравання паўправадніковых матэрыялаў мыш’яком. Мыш’яку халькагеніды, злучэнні мыш’яку з серай — сульфіды As2S3 (у прыродзе — мінерал аўрыпігмент), As4S4 (мінерал рэальгар), As4S3 (мінерал дымарфіт) i As2S5, з селенам — селеніды As2Se3 і As4Se4, з тэлурам — тэлурыд As2Te3. Усе халькагеніды, акрамя As2S5 (аморфнае рэчыва аранжавага колеру, крышталізуецца пад высокім ціскам), крышт. рэчывы. Устойлівыя ў паветры, не раствараюцца ў вадзе, добра раствараюцца ў растворах шчолачаў. As2S3, As2Se3 i As2Te3паўправаднікі. Атрымліваюць сплаўленнем элементаў у вакууме ці інертным асяроддзі. Выкарыстоўваюць як кампаненты халькагеніднага шкла, для вырабу валаконных святлаводаў у інфрачырв. вобласці спектра і інш. Усе растваральныя ў вадзе і слабакіслым асяроддзі (напр., страўнікавы сок) М.з. надзвычай атрутныя; злучэнні As(III) больш атрутныя за злучэнні As(V), асабліва небяспечныя AsH3 і AS2O3. ГДК мыш’яку і М.з. у паветры (у пераліку на мыш’як) 0,5 мг/м³, для AsH3 — 0,1 мг/м³.

А.П.Чарнякова.

т. 11, с. 55

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАГРА́ФІЯ (ад металы + ...графія),

раздзел металазнаўства, які вывучае структуру металаў і сплаваў з дапамогай аптычнай і электроннай мікраскапіі, дыфракцыі рэнтгенаўскіх прамянёў. Даследуе заканамернасці ўтварэння структуры, яе змен пад уплывам знешніх уздзеянняў.

Вывучэнне паверхні металу няўзброеным вокам, праз лупу або мікраскоп з павелічэннем да 10 разоў дазваляе выявіць макраструктуру (крышталічную, хім. або мех. неаднастайнасць у выглядзе буйных зярнят, дэфектаў і дамешкаў). Даследаванне паліраванай і траўленай паверхні пры дапамозе мікраскопа з павелічэннем у 50—1500 разоў дазваляе выявіць мікраструктуру (памеры і формы зярнят, размеркаванне структурных фаз, уключэнняў і дэфармацый). Металаграфскае траўленне (уздзеянне кіслотным і інш. актыўным рэагентам) дае магчымасць устанавіць унутр, структурную будову сплаву. З дапамогай трансмісійнага мікраскопа вядуць электронна-мікраскапічнае даследаванне (выяўляюць фрагменты структуры памерам у некалькі нанаметраў, назіраюць скопішчы дыслакацый і скажэнняў крышт. рашоткі); электроннага сканіруючага мікраскопа — атрымліваюць відарысы дэфектаў структуры з вял. глыбінёй рэзкасці пры павелічэнні да 20 тыс. разоў (вывучаюць паверхні разбурэння, аб’ёмныя ўключэнні і інш.); рэнтгенаўскага дыфрактометра — атрымліваюць інфармацыю аб крышталеграфічных параметрах асобных фаз, унутр. напружаннях, раствораных у металах атамах. Адначасова з металаграфскімі даследаваннямі будовы металаў і сплаваў вывучаюць умовы, што выклікаюць змену іх унутр. структуры (уздзеянне награвання і ахаладжэння, пластычнай дэфармацыі, адпачыну, рэкрышталізацыі, спякання, насычэння хім. элементамі і інш.), а таксама даследуюць фіз. (мех.) уласцівасці. Даныя выкарыстоўваюць для вывучэння працэсаў атрымання метал. матэрыялаў з зададзенымі ўласцівасцямі. М. выкарыстоўваецца як адзін з метадаў кантролю якасці пры ліцці, тэрмаапрацоўцы, апрацоўцы ціскам, зварцы і інш. Першыя даследаванні структуры з выкарыстаннем аптычнага мікраскопа праведзены ў 1931 П.А.Аносавым.

На Беларусі М. выкарыстоўваюць пры распрацоўцы новых матэрыялаў у Фізіка-тэхн. ін-це Нац. АН Беларусі, Бел. навукова-вытв. канцэрне парашковай металургіі, БПА, у металургічнай і металаапрацоўчай прам-сці.

Літ.:

Смолмен Р., Ашби К. Современная металлография: Пер. с англ. М., 1970;

Лившиц Б.Г. Металлография. 3 изд. М., 1990;

Приборы и методы физического металловедения: Пер. с англ. Вып. 1—2. М., 1973—74.

Г.М.Гайдалёнак.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЎЛІ́ЧНАЯ ТУРБІ́НА,

гідратурбіна, лопасцевы гідраўлічны рухавік, які пераўтварае мех. энергію патоку вады ў энергію вярчальнага вала. Паводле прынцыпу дзеяння падзяляюцца на актыўныя турбіны (свабоднаструменныя) і рэактыўныя турбіны (напорнаструменныя), паводле размяшчэння вала рабочага кола — на вертыкальныя, гарызантальныя і нахіленыя. Выкарыстоўваюцца пераважна на гідраэлектрычных станцыях для прывода гідрагенератара (спалучаныя з ім гідраўлічныя турбіны наз. гідраагрэгатамі).

Актыўныя гідраўлічныя турбіны падзяляюцца на каўшовыя, нахіленаструменныя і двухкратныя. У каўшовых гідраўлічных турбінах рабочым колам з’яўляецца дыск, па акружнасці якога размешчаны лопасці ў выглядзе падвойных каўшоў. Накіравальным апаратам (адным або некалькімі сопламі) струмень вады пад атм. ціскам з вял. скорасцю падаецца на лопасці (каўшы) і з малой скорасцю зыходзіць з кола. Бываюць з верт. або гарыз. валам. Магутнасцю да 250 МВт, рабочы напор 40—2000 м. Рэактыўныя гідраўлічныя турбіны паводле напрамку руху вады ў рабочым коле падзяляюцца на восевыя (паваротна-лопасцевыя, прапелерныя) і нявосевыя (радыяльна-восевыя, дыяганальныя). Маюць турбінную (спіральную) камеру (забяспечвае раўнамернае паступленне вады па ўсім контуры накіравальнага апарата), накіравальны апарат з прафіляванымі лапаткамі (рэгулюе расход вады), рабочае кола з паваротнымі або нерухомымі лопасцямі (яго вал злучаны з валам эл. генератара), адсмоктвальную трубу (змяншае скорасць вады, што паляпшае выкарыстанне энергіі вадзянога патоку). Магутнасць паваротна-лопасцевых гідраўлічных турбін да 250 МВт, рабочы напор 2—70 м; дыяганальных адпаведна да 350 МВт, 40—120 м; радыяльна-восевых — да 800 МВт і болей, 2—600 м.

Разнавіднасцю гідраўлічнай турбіны было вадзяное кола, вядомае са старажытнасці. Першая рэактыўная гідраўлічная турбіна вынайдзена франц. інж. Б.Фурнеронам у 1827, радыяльна-восевая — амер. інж. Дж.Фрэнсісам у 1855, актыўная каўшовая — амер. інж. А.Пелтанам у 1889, паваротна-лопасцевая — аўстр. інж. В.Капланам у 1913. Вытв-сць гідраўлічных турбін у б. СССР наладжана ў 1924. Найб. вядомыя гідраўлічныя турбіны фірмаў Японіі, ЗША, Францыі, Вялікабрытаніі, Германіі, Швецыі і інш. На Беларусі малыя гідраўлічныя турбіны выпускаў у 1949—58 Бабруйскі маш.-буд. з-д. ГЭС Беларусі абсталяваны верт. і гарыз. радыяльна-восевымі гідраўлічнымі турбінамі. Перспектыўныя турбіны малой (10—50 кВт) магутнасці з рабочым напорам 2—5 м.

Я.П.Забела.

т. 5, с. 235

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БА́РЫЮ ЗЛУЧЭ́ННІ,

хімічныя злучэнні, у састаў якіх уваходзіць барый, пераважна ў ступені акіслення +2. Найб. пашыраны аксід, гідраксід барыю, солі барыю (сульфат, хларыд, карбанат, нітрат і інш.). Бясколерныя крышт. рэчывы, ядавітыя, ГДК амаль усіх барыю злучэнняў 0,5 мг/м³. Сыравінай у вытв-сці барыю злучэнняў з’яўляецца барытавы канцэнтрат (80—95% сульфату барыю), які атрымліваюць флатацыяй барыту.

Барыю аксід BaO, tпл 2017 °C, пры награванні ўзганяецца, шчыльн. 5,7·103 кг/м³. З вадой утварае гідраксід барыю, з кіслотамі, дыяксідам вугляроду — солі. Выкарыстоўваюць у вытв-сці шкла, эмаляў, каталізатараў. Пры награванні ў кіслародзе (500 °C) пераходзіць у пераксід барыю BaO2 — кампанент піратэхн. сумесяў, адбельвальнікаў для тканін і паперы. Барыю гідраксід Ba(OH)2, tпл 408 °C, гіграскапічны, насычаны раствор у вадзе наз. барытавай вадой; моцная аснова. Выкарыстоўваецца як паглынальнік дыяксіду вугляроду, для ачысткі алеяў і тлушчаў, кампанент змазак, аналітычны рэагент на сульфат- і карбанат-іоны. Барыю сульфат BaSO4, tпл 1580 °C, шчыльн. 4,5·103 кг/м³, не раствараецца ў вадзе і разбаўленых кіслотах, паглынае рэнтгенаўскае выпрамяненне. Напаўняльнік гумы і паперы (у тым ліку фотапаперы), кардону, кампанент белых мінер. фарбаў, кантрастнае рэчыва ў рэнтгенаскапічных даследаваннях страўнікава-кішачнага тракту (ГДК 6 мг/м³). Барыю карбанат BaCO3, tпл 1555 °C (у атмасферы CO2 пад ціскам 45 МПа), шчыльн. 4,25·103 кг/м³. Дрэнна раствараецца ў вадзе, рэагуе з разбаўленымі салянай і азотнай кіслотамі. Трапляецца ў прыродзе як мінерал вітэрыт. Выкарыстоўваюць у вытв-сці катодаў у электронна-вакуумных прыстасаваннях, аптычнага шкла, эмаляў, палівы, керамічных матэрыялаў, ферытаў, чырв. цэглы. Барыю хларыд BaCl2, tпл 961 °C, шчыльн. 3,83·103 кг/м³, раствараецца ў вадзе. Выкарыстоўваецца ў гарбарнай прам-сці для ўцяжарвання і асвятлення скуры, для барацьбы са шкоднікамі ў сельскай гаспадарцы, загартоўкі «хуткарэзнай» сталі. Барыю нітрат Ba(NO3)2. Існуе як мінерал нітрабарыт, выкарыстоўваецца ў эмалях і паліве, піратэхніцы. Барыю тытанат BaTiO3сегнетаэлектрык. Барыю храмат BaCrO4 і манганат BaMnO4 — адпаведна жоўты і зялёны пігменты.

Літ.:

Ахметов Т.Г. Химия и технология соединений бария. М., 1974.

Л.М.Скрыпнічэнка.

т. 2, с. 336

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗО́РКІ,

нябесныя целы, якія самі свецяцца; складаюцца з распаленых газаў (плазмы). Найб. распаўсюджаныя аб’екты ў Сусвеце — змяшчаюць больш за 98% масы ўсяго касм. рэчыва. Знаходзяцца ў стане цеплавой і гідрастатычнай раўнавагі, што забяспечваецца балансам паміж сілай гравітацыі і ціскам гарачага рэчыва і выпрамянення. Усе З., акрамя Сонца, відаць з Зямлі як святлівыя пункты. Яркасць З. характарызуюць зорнай велічынёй. Бачнае становішча на небасхіле вызначаюць дзвюма вуглавымі пераменнымі — схіленнем і прамым узыходжаннем (гл. Нябесныя каардынаты).

З. існуюць дзесяткі мільярдаў гадоў. У іх ядрах увесь час адбываюцца тэрмаядзерныя рэакцыіасн. крыніца энергіі і выпрамянення. Фіз. характарыстыкі і працягласць існавання З. вызначаюцца масай і хім. складам, якія З. мела ў момант утварэння. Адрозніваюць З.: гіганты, звышгіганты, карлікі, новыя зоркі, звышновыя зоркі, пераменныя зоркі, падвойныя зоркі. Хім. склад большасці З.: 75% вадароду, 23% гелію, 2% інш. элементаў. Дыяпазон магчымых мас — 10​−2—10​2 масы Сонца. Радыусы самых вял. З. — чырвоных звышгігантаў — у 10​2—10​3 разоў большыя, а самых малых — белых карлікаў і нейтронных З. — у 10​2—10​4 разоў меншыя за радыус Сонца. Сярэдняя шчыльнасць чырвоных звышгігантаў 10‘​3 кг/м³, нейтронных З. больш за 10​17 кг/мЗ. Свяцільнасць блакітных гігантаў і чырвоных звышгігантаў складае 8∙10​5, а чырвоных карлікаў 10​−4 свяцільнасці Сонца. З. ўтвараюць у прасторы вял. зорныя сістэмы — галактыкі. Вывучэнне будовы нашай Галактыкі паказвае, што многія З. групуюцца ў зорныя скопішчы, зорныя асацыяцыі і інш. З. вывучаюцца зорнай астраноміяй і астрафізікай.

Літ.:

Агекян Т.А. Звезды, галактики, Метагалактика. 3 изд. М., 1981;

Звезды и звездные системы. М., 1981;

Шкловский И.С. Звезды: их рождение, жизнь и смерть. 3 изд. М., 1984.

А.А.Шымбалёў.

Спіс сузор’яў
Беларуская назва Лацінская назва Становішча
на зорным небе
1 2 3
Авен Aries Пн
Аднарог Monoceros Э
Актант Ostans Пд
Андрамеда Andromeda Пн
Арол Aquila Э
Арыён Orion Э
Ахвярнік Ara Пд
Блізняты Gemini Пн
Вадаліў Aquarius Пд
Валапас Bootes Пн
Валасы Веранікі Coma Berenices Пн
Ветразі Vela Пд
Вознік Auriga Пн
Воран Corvus Пд
Воўк Lupus Пд
Вялікая Мядзведзіца
(нар. назва Вялікі Воз)
Ursa Major Пн
Вялікі Пёс Canis Major Пд
Гадзіннік Horologium Пд
Геркулес Hercules Пн
Гідра Hydra Э
Голуб Columba Пд
Гончыя Псы Canes Venatici Пн
Дзева Virgo Э
Дракон Draco Пн
Дэльфін Delphinus Пн
Журавель Crus Пд
Жывапісец Pictor Пд
Жырафа Camelopardalis Пн
Залатая Рыба Dorado Пд
Заяц Lepus Пд
Змеяносец Ophiuchus Э
Змяя Serpens Э
Індзеец Indus Пд
Казярог Capricornus Пд
Карма Puppis Пд
Касіяпея
(нар. назва Касцы)
Cassiopeia Пн
Кіль Carina Пд
Кіт Cetus Э
Компас Pyxis Пд
Крыж Crux Пд

т. 7, с. 109

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛУ́РГІЯ (ад грэч. metallurgeō здабываю руду, апрацоўваю металы),

галіна навукі, тэхнікі і прам-сці, якая ахоплівае працэсы атрымання металаў з руд і інш. матэрыялаў, змены хім. саставу, структуры і ўласцівасцей метал. сплаваў, надання металу пэўнай формы. Працэсы М.: падрыхтоўка руд (здрабненне, абагачэнне карысных выкапняў, абпал або сушка, агламерацыя, брыкетаванне і інш.); вылучэнне металаў з руд і інш. матэрыялаў, ачыстка іх ад непажаданых дамешкаў (рафінаванне металаў); вытв-сць металаў і сплаваў; тэрмічная апрацоўка, хіміка-тэрмічная апрацоўка, тэрмамеханічная апрацоўка, ліццё і апрацоўка металаў ціскам, зварка і паянне; нанясенне ахоўных і дэкаратыўных пакрыццяў з інш. металаў і неметалаў на паверхні метал. вырабаў (металізацыя). М. падзяляецца на чорную металургію (атрыманне чыгуну, сталі, ферасплаваў, пракату і некат. вырабаў з чыгуну і сталі) і каляровую металургію (вытв-сць і апрацоўка каляровых металаў і сплаваў). У залежнасці ад метадаў атрымання металаў і сплаваў адрозніваюць вакуумную металургію, гідраметалургію, парашковую металургію, піраметалургію, плазменную металургію, электраметалургію. Важнай галіной М. з’яўляецца металазнаўства.

М. ўзнікла ў глыбокай старажытнасці. Паводле археал. даных, медзь атрымлівалі ўжо ў 7—6-м тыс. да н.э., з 4—3-га тыс. да н.э. выкарыстоўвалі яе сплаў з волавам — бронзу. З сярэдзіны 2-га тыс. да н.э. пачалі выплаўляць жалеза (гл. Сырадутны працэс), з сярэдзіны 14 ст. — чыгун (гл. Доменны працэс), з 18 ст. — сталь, выкарыстоўваючы тыгельную плаўку, а потым бесемераўскі працэс, мартэнаўскі працэс, тамасаўскі працэс, кіслародна-канвертарны працэс. Найб. актыўна як галіна прам-сці і навукі М. развіваецца з 19 ст. дзякуючы вынаходствам і распрацоўкам Г.Бесемера і С.Дж.Томаса (Англія), А.Мартэнса (Германія), П.Э.Мартэна (Францыя), П.П.Аносава і Дз.К.Чарнова (Расія) і інш. М. — адна з найважнейшых галін сучаснай прам-сці; маштабы вытв-сці металаў (у першую чаргу сталі) характарызуюць тэхніка-эканам. ўзровень развіцця краіны.

На Беларусі вытв-сць некаторых бронзавых рэчаў з прывазной сыравіны пачалася з сярэдзіны 2-га тыс. да н.э., чорная М. з’явілася ў 7—6 ст. да н.э. Жалеза здабывалі з балотнай руды ў печах-домніцах (сырадутных горнах), пераплаўлялі ці награвалі для апрацоўкі ў тыгельных, крычных і кавальскіх горнах (гл. Горан). Як навука М. на Беларусі развіваецца ў Фізіка-тэхнічным і інш. ін-тах Нац. АН, у БПА, галіновых НДІ, некаторых ВНУ. Асн. вытворца чорнага пракату для прам-сці краіны — Беларускі металургічны завод у Жлобіне, значная ч. прадукцыі якога ідзе на экспарт. Вытв-сць сталі і чыгунных вырабаў ёсць на з-дах «Цэнтраліт» (Гомель), МТЗ, МАЗ, станкабудаўнічым імя Кірава (Мінск), «Праммашрамонт» (Полацк), Мінскім механічным імя Вавілава і інш. Гл. таксама Металургічная прамысловасць.

Літ.:

Основы металлургии. Т. 1—7. М., 1961—75;

Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия. 4 изд. М., 1985;

Венецкий С.И. От костра до плазмы: Рассказ о многовековом пути, пройденном металлургией... М., 1986.

А.П.Ласкаўнёў.

т. 10, с. 306

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАДЗЕ́МНЫЯ ВО́ДЫ,

воды ў тоўшчы горных парод верхняй часткі зямной кары ў вадкім, цвёрдым і парападобным стане; частка водных рэсурсаў, карысныя выкапні. Фарміруюцца пры інфільтрацыі з зямной паверхні дажджавых, расталых, рачных, азёрных і марскіх вод, кандэнсацыі вадзяной пары ў порах або шчылінах парод, пры асадкаўтварэнні або крышталізацыі магмы. П.в., якія перамяшчаюцца пад уплывам сілы цяжару, наз. гравітацыйнымі або свабоднымі, у адрозненне ад звязаных вод, што ўтрымліваюцца малекулярнымі і інш. сіламі на часцінках горных парод. Слаі горных парод, насычаныя гравітацыйнымі водамі, утвараюць ваданосныя гарызонты. У першым ад паверхні зямлі безнапорным ваданосным гарызонце залягаюць грунтавыя воды. Непасрэдна над іх свабоднай паверхняй знаходзяцца капілярныя воды. Зона ад паверхні зямлі да люстэрка грунтавых вод, дзе адбываецца прасочванне вады з паверхні, наз. зонай аэрацыі. У зоне аэрацыі над нявытрыманымі слабапранікальнымі праслойкамі ўтвараецца верхаводка. Ніжэй за грунтавыя воды паміж слабапранікальнымі пародамі залягаюць пластавыя воды, якія знаходзяцца пад гідрастатычным ціскам (гл. Артэзіянскія воды), радзей, на асобных участках безнапорныя. Паводле ступені мінералізацыі П.в. падзяляюцца на прэсныя (да 1 г/л), саланаватыя (ад 1 да 10 г/л), салёныя (ад 10 да 35 г/л) і расолы (больш за 35 г/л). У вертыкальным разрэзе прэсныя гідракарбанатна-кальцыевыя воды змяняюцца мінералізаванымі сульфатна-натрыевымі або сульфатна-кальцыевымі, у глыбокіх гарызонтах — высокамінералізаванымі хларыдна-натрыевымі і хларыдна-кальцыевымі, а на вял. глыбіні са значнай колькасцю брому, ёду і інш. мікраэлементаў. П.в. з павышанай канцэнтрацыяй біялагічна актыўных кампанентаў (часам арган. рэчываў) і спецыфічнымі фіз.-хім. ўласцівасцямі (хім. састаў, т-ра, радыеактыўнасць і інш.) наз. мінеральнымі водамі. П.в. шырока выкарыстоўваюцца для розных мэт, з’яўляюцца крыніцай якаснай пітной вады. Агульныя запасы П.в. сушы складаюць 60 млн. км3, але пашыраны яны нераўнамерна. Парадак карыстання П.в. і іх ахова рэгулююцца водным заканадаўствам. Даследуе П.в. гідрагеалогія.

На тэр. Беларусі прэсныя П.в. прымеркаваны да верхняй ч. літасферы (да глыб. 150—450 м). Натуральныя рэсурсы П.в. складаюць 43,5 млн. м³, эксплуатацыйныя каля 50 млн. м³/сут, у т.л. зацверджаныя 6,4 млн. м³/сут (1997). Хім, састаў іх на большай ч. тэр. блізкі да фонавага. Вызначанае пагаршэнне якасці П.в. звязана з гасп. дзейнасцю. Гал. крыніцы забруджвання: населеныя пункты, жывёлагадоўчыя фермы, неэфектыўныя ачышчальныя збудаванні і інш. Назіранні за рэжымам П.в. вядуцца на 216 пастах, іх вынікі аналізуюцца і сістэматызуюцца ў водным кадастры.

Літ.:

Государственный водный кадастр: Водные ресурсы, их использование и качество вод (за 1996 г.). Мн., 1997;

Альтшуль А.Х., Усенко В.С., Чабан М.О. Регулирование запасов подземных вод. М., 1977;

Кудельский А.В., Пашкевич В.И., Ясовеев М.Г. Подземные воды Беларуси. Мн., 1998;

Калинин М.Ю. Подземные воды и устойчивое развитие. Мн., 1998.

В.С.Усенка.

т. 11, с. 496

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВАЯ ПРАМЫСЛО́ВАСЦЬ,

галіна паліўна-энергетычнага комплексу, якая ўключае разведку, распрацоўку і эксплуатацыю радовішчаў газаў прыродных, вытв-сць штучных газаў, комплексную перапрацоўку, транспарціроўку па магістральных газаправодах, захоўванне, пастаўку розным галінам прам-сці і для камунальна-быт. гаспадаркі. Газ выкарыстоўваецца як крыніца энергіі і хім. сыравіна. Значная колькасць яго спажываецца ў хім., металургічнай, маш.-буд. прам-сці, у буд. індустрыі. На газаперапрацоўчых з-дах з прыроднага газу (у т. л. і са спадарожнага пры здабычы нафты) атрымліваюць газавы кандэнсат, які выкарыстоўваецца як паліва для рухавікоў (стабільны кандэнсат) і як хім. сыравіна, сухі і звадкаваны газ, сыравіну для вытв-сці азотных угнаенняў і інш.

Выкарыстанне прыродных гаручых газаў («вечных агнёў») вядома са стараж. часоў у Дагестане, Азербайджане, Іране і інш. краінах. Газавая прамысловасць пачала фарміравацца ў канцы 18 — пач. 19 ст., калі газ сталі выкарыстоўваць для асвятлення вуліц і памяшканняў. У 1-й пал. 19 ст. з’явіліся ўстаноўкі для выпрацоўкі штучнага газу — газагенератары. Газ атрымлівалі з вугалю, асабліва пашырылася яго вытв-сць пры вырабе коксу. Здабыча прыроднага газу пачалася ў 2-й пал. 19 ст. (1870, ЗША). З сярэдзіны 19 ст. прыродныя газы выкарыстоўваюцца як тэхнал. паліва.

Асновай сучаснай газавай прамысловасці з’яўляецца прыродны газ, вытв-сць штучнага газу з вугалю і сланцаў не расце, у невял. аб’ёме газ атрымліваюць метадам падземнай газіфікацыі вугалю. У свеце здабываецца каля 2,1 трлн. м³ прыроднага газу (1993). Найб. запасы маюць: краіны б. СССР — Расія, Туркменія, Узбекістан, Азербайджан і інш. (больш за 17 трлн. м³, самыя вял. Астраханскае радовішча, Газлінскае радовішча, Урэнгойскае радовішча, Ямбургскае радовішча і інш.); Іран (10,5 трлн. м³, буйное радовішча Ахваз, Персідскага заліва нафтагазаносны басейн і інш.); ЗША (5,6 трлн. м³, Ілінойскі нафтагазаносны басейн, Каліфарнійскія нафтагазаносныя басейны, Паўночнай Аляскі нафтагазаносны басейн і інш.); Алжыр (3,2 трлн. м³, Алжыра-Лівійскі нафтагазаносны басейн); Канада (2,6 трлн. м³, радовішча Пембіна і інш.); Мексіка (2,2 трлн. м³, Мексіканскага заліва нафтагазаносны басейн); Саудаўская Аравія (2 трлн. м³, Сафанія); Нідэрланды (1,6 трлн. м³, Паўночнага мора нафтагазаносная вобласць, усе даныя на пач. 1980-х г.). Пра буйнейшых вытворцаў газу гл. ў табл. 1. <TABLE>

Транспарціроўка газу ад радовішча да спажыўца ажыццяўляецца па магістральных газаправодах (з дапамогай устаноўленых на іх газаперапамповачных агрэгатаў), агульная працягласць якіх у свеце 750 тыс. км (канец 1970-х г.), а водным шляхам — спец. танкерамі метанавозамі-газавозамі. Найб. агульную працягласць газатрансп. сістэм маюць ЗША (442 тыс. км), самыя працяглыя сістэмы ў краінах СНД — шматнітачная Урэнгой—Ухта—Таржок—Мінск—Івацэвічы—Даліна (11 тыс. км) і ў Паўн. Амерыцы Аляска—Канада—ЗША (7,7 тыс. км). Захоўваецца газ у наземных (газгольдэры), паверхневых падземных (участкі газаправодаў з павышаным ціскам) і падземных сховішчах. Найб. выкарыстоўваюцца падземныя сховішчы, якія ствараюць у выпрацаваных газавых ці нафтавых радовішчах (газ запампоўваюць праз свідравіны ў спустошаны прадуктыўны пласт).

На Беларусі газавая прамысловасць развіваецца з 1960-х г. на базе прывазнога прыроднага газу (пасля будаўніцтва магістральнага газаправода Дашава—Мінск). Адзінае Старасельскае радовішча прыроднага газу не распрацоўваецца. У 1995 даўжыня магістральных газаправодаў склала 5534 км. Здабываецца спадарожны газ на нафтавых промыслах. Для яго перапрацоўкі пабудаваны Беларускі газаперапрацоўчы завод. Дынаміку выкарыстання газу ў газавай прамысловасці Беларусі гл. ў табл. 2. <TABLE>

Прыродны газ паступае з Расіі па газаправодзе Таржок—Мінск—Івацэвічы—Кобрын. У 1995 імпартавана 14 млрд. м³ — амаль увесь спажываны газ. Прыродны газ у эканоміцы Беларусі выкарыстоўваецца для атрымання электраэнергіі, як паліва і хім. сыравіна (напр., на ВА «Азот» у Гродне для выпрацоўкі азотных тукаў), спадарожны пасля перапрацоўкі ідзе на паліва на Светлагорскай ЦЭЦ і ў кватэрах Рэчыцы і Светлагорска.

С.М.Зайцаў.

т. 4, с. 425

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)