АПЛАДНЕ́ННЕ,

сінгамія, працэс зліцця мужчынскай і жаночай палавых клетак (гамет); аснова палавога размнажэння ў раслін, жывёл і чалавека. У выніку апладнення ўтвараецца зігота, якая дае пачатак новаму арганізму. Пры гэтым аднаўляецца дыплоідны набор храмасом, характэрны для саматычных клетак арганізма, і забяспечваецца перадача спадчынных прыкмет ад бацькоў да нашчадкаў.

Адрозніваюць апладненне вонкавае, калі палавыя клеткі зліваюцца па-за арганізмам, і ўнутранае, якое адбываецца ўнутры палавых органаў індывіда (перакрыжаванае апладненне і самаапладненне). У жывёл і чалавека апладненню папярэднічае асемяненне. У жывёл з унутраным апладненнем (пераважна наземныя жывёлы) ёсць спец. прыдаткавыя палавыя органы для пераносу спермы з цела самцоў у цела самак. У большасці жывёл, што жывуць у вадзе (ігласкурыя, малюскі, некаторыя рыбы і земнаводныя), назіраецца вонкавае апладненне: у навакольным асяроддзі адкладаюцца яйцаклеткі і сперма, дзе і зліваюцца. У шэрагу раслін (бактэрыі, сіне-зялёныя водарасці) тыповы палавы працэс, у т. л. апладненне, адсутнічае. У ніжэйшых раслін назіраюцца розныя віды палавога працэсу: ізагамія, анізагамія, аагамія, кан’югацыя і інш. Вышэйшым раслінам уласціва аагамія. У голанасенных і пакрытанасенных раслін апладненню папярэднічае апыленне. У пакрытанасенных ажыццяўляецца т.зв. двайное апладненне.

т. 1, с. 428

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАКТЭРЫЯ́ЛЬНЫЯ ХВАРО́БЫ РАСЛІ́Н,

бактэрыёзы, хваробы раслін, якія выклікаюцца неспараноснымі бактэрыямі з сямействаў мікабактэрый, псеўдаманадаў, бактэроідаў. Пашыраны ва ўсім свеце. Многія вельмі шкодныя, асабліва ў паўд. раёнах зямнога шара. Прычыняюць страты с.-г. культурам: бульбе, памідорам, агуркам, капусце, буракам, бабовым, бавоўніку, тытуню, пладовым, вінаграду і інш. Пашкоджанні бываюць: агульныя (выклікаюць гібель усёй расліны або асобных яе частак — гамоз бавоўніку, сасудзісты бактэрыёз капусных), выяўляюцца на каранях (каранёвыя гнілі) або ў сасудзістай сістэме (гл. Сасудзістыя хваробы раслін); мясцовыя (захворванні асобных частак або органаў расліны — бактэрыяльная мокрая гніль агародніны, бактэрыёз агуркоў і дыні), выяўляюцца на парэнхімных тканках у форме апёкаў раслін, плямістасцяў раслін і мокрых гніляў: мяшанага характару (сасудзіста-парэнхіматозныя хваробы, напрыклад, бактэрыёз сланечніку). Асобнае месца займаюць бактэрыяльныя хваробы раслін, звязаныя з утварэннем пухлін (бактэрыяльны каранёвы рак пладовых). Бактэрыі пранікаюць у расліну праз вусцейкі лісця, вадзяныя поры, розныя раны. Перадача ўзбуджальнікаў магчыма з насеннем і пасадачным матэрыялам, расліннымі рэшткамі, кроплямі дажджу, паліўнымі водамі, насякомымі, нематодамі і інш. Меры барацьбы гл. ў арт. Хваробы сельскагаспадарчых раслін.

Літ.:

Бактериальные болезни растений. М., 1981;

Дорожкин Н.А., Бельская С.И. Болезни картофеля. Мн., 1979.

т. 2, с. 233

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯСІ́НТЭЗ

(ад бія... + сінтэз),

утварэнне ў жывых арганізмах складаных арган. рэчываў з больш простых злучэнняў пры ўдзеле ферментаў. Гал. функцыі біясінтэзу — ажыццяўленне актыўнага абмену рэчываў, утварэнне і аднаўленне структурных частак клетак і тканак (гл. Анабалізм), што цесна звязана з адначасовым процілеглым працэсам расшчаплення складаных арган. рэчываў на больш простыя (гл. Катабалізм), якія з’яўляюцца крыніцай «будаўнічага матэрыялу» і энергіі для біясінтэзу. У выніку біясінтэзу павялічваюцца памеры малекул, ускладняецца іх структура і павышаецца энергет. патэнцыял.

Пачатковыя пастаўшчыкі энергіі для біясінтэзу — зялёныя расліны і фотасінтэзавальныя бактэрыі, што акумулююць сонечную энергію (гл. Фотасінтэз), а таксама некаторыя інш. бактэрыі, якія выкарыстоўваюць энергію акіслення неарган. злучэнняў (гл. Хемасінтэз). З дапамогай гэтай энергіі аўтатрофныя і хематрофныя арганізмы здольны сінтэзаваць простыя арган. рэчывы з неарган. (гл. Асіміляцыя). Усе іншыя (гетэратрофныя) арганізмы выкарыстоўваюць гатовыя арган. рэчывы як матэрыял і крыніцу энергіі для свайго біясінтэзу (гл. Акісляльнае фасфарыліраванне). Асн. крыніца энергіі для біясінтэзу — распад макраэргічных злучэнняў, пераважна адэназінтрыфосфарнай кіслаты (гл. Біяэнергетыка). Для біясінтэзу некаторых клетачных кампанентаў патрабуюцца таксама багатыя энергіяй атамы вадароду, донарам якіх з’яўляецца нікацінамідадэніндынуклеатыдфасфат (НАДФ). У ходзе біясінтэзу кожны аднаклетачны арганізм, як і кожная клетка мнагаклетачнага арганізма, самастойна сінтэзуе рэчывы, што складаюць яго. Асноўныя з іх — полінуклеатыды (ДНК і РНК), поліцукрыды і бялкі, малекулы якіх разнастайныя па структуры і найбольш складаныя. Утварэнне палімерных арган. злучэнняў з больш простых манамераў суправаджаецца ў кожным выпадку рэакцыяй дэгідратацыі (вывядзеннем малекул вады з рэагуючых злучэнняў). Палімерызацыя адбываецца або «з галавы», або «з хваста». Калі палімерызацыя ідзе «з галавы», актываваная сувязь знаходзіцца на канцы палімеру, што бесперапынна расце, і павінна рэгенерыраваць пры кожным далучэнні манамеру. У гэтым выпадку кожны манамер прыносіць з сабой актываваную групу, якая будзе выкарыстана ў рэакцыі з наступным манамерам дадзенай паслядоўнасці. Калі палімерызацыя ідзе «з хваста», актывізаваная сувязь, якую нясе з сабой новы манамер, будзе выкарыстана для далучэння гэтага манамеру да палімернага ланцуга. Палімерызацыя полінуклеатыдаў і некаторых простых поліцукрыдаў ідзе «з хваста», бялкоў — «з галавы». Характар біясінтэзу, які адбываецца ў клетцы, вызначаецца спадчыннай інфармацыяй, што «закадзіравана» ў геноме.

Біясінтэз можа быць ажыццёўлены і ў эксперым. умовах. У прам-сці шырока выкарыстоўваецца мікрабіял. сінтэз — біясінтэз мікраарганізмамі біялагічна актыўных рэчываў (вітамінаў, некаторых гармонаў, антыбіётыкаў, амінакіслот, бялкоў і інш.). Многія інш. рэакцыі біясінтэзу ўлічваюцца або выкарыстоўваюцца ў розных галінах біятэхналогіі.

Літ.:

Биосинтез белка и нуклеиновых кислот. М., 1965;

Молекулярная биология клетки: Пер. с англ. Т. 1. 2 изд. М., 1994;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 2. М., 1985.

А.М.Ведзянееў.

т. 3, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНЫ КРУГАВАРО́Т,

паступленне хім. элементаў з глебы, вады і атмасферы ў жывыя арганізмы, ператварэнне іх у новыя складаныя злучэнні і вяртанне зноў у глебу, ваду, атмасферу. Штогод частка арган. рэчыва або поўнасцю адмерлыя арганізмы выходзяць з цыкла і акумулююцца ў зямной кары. Біялагічны кругаварот узнік адначасова з паяўленнем жыцця на Зямлі і з’яўляецца бесперапынным цыклічным працэсам размеркавання рэчываў, энергіі і інфармацыі ў межах экалагічных сістэм. Аснова біялагічнага кругавароту — утварэнне ў працэсе фотасінтэзу першаснай прадукцыі (расліннай), ператварэнне яе ў другасную (у прыватнасці, жывёльную) і яе распад. Актыўны рух арган. рэчыва ў экалагічных сістэмах ажыццяўляецца па трафічных ланцугах. Асн. роля ў біялагічным кругавароце належыць першасным прадуцэнтам (зялёныя кветкавыя расліны, мікраскапічныя планктонныя водарасці, хемасінтэзуючыя мікраарганізмы), кансументам (жывёлы) і рэдуцэнтам (сапрафітныя арганізмы, пераважна бактэрыі). Біямаса арганізмаў розных трафічных узроўняў у межах трафічных ланцугоў неаднолькавая; яна вышэй на ўзроўні прадуцэнтаў і змяншаецца на меры прасоўвання да кансументаў вышэйшага парадку. Найб. значэнне мае біялагічны кругаварот так званых біяфільных (неабходных для жыцця) элементаў — азоту, фосфару, серы. Існуюць таксама кругавароты кіслароду, вадароду, вугляроду і інш. хім. элементаў, якія складаюць частку агульнага біялагічнага кругавароту, што цесна ўвязаны з біягеахімічным кругаваротам рэчываў. Інтэнсіўнасць біялагічнага кругавароту вызначае колькасць і разнастайнасць жывых арганізмаў, аб’ём назапашанай арган. прадукцыі, якая можа быць выкарыстана для задавальнення патрэб чалавека.

т. 3, с. 172

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЫБІЁТЫКІ

(ад анты... + грэч. bios жыцце),

арганічныя рэчывы, што ўтвараюцца ў мікраарганізмах і ў невял. дозах прыгнечваюць жыццядзейнасць інш. мікраарганізмаў, вірусаў і клетак. Да антыбіётыкаў адносяць таксама раслінныя (фітанцыды) і жывёльнага паходжання рэчывы з антымікробным дзеяннем. Вядома каля 4 тыс. антыбіётыкаў, у мед. практыцы выкарыстоўваецца каля 60 (першы клінічна эфектыўны антыбіётык пеніцылін адкрыты англ. мікрабіёлагам А.Флемінгам у 1929).

Паводле хім. прыроды антыбіётыкі належаць да розных груп злучэнняў: вугляродзмяшчальныя (неаміцын, канаміцын, стрэптаміцын, амінагліказіды і інш., антыбіётыкі групы рыстаміцыну — ванкаміцын), макрацыклічныя лактоны (эрытраміцын, алеандаміцын, паліены), хіноны і блізкія да іх рэчывы (тэтрацыкліны, антрацыкліны), пептыды і пепталіды (пеніцыліны, інтэрферон, граміцыдзін С, актынаміцыны) і інш. Паводле механізма дзеяння адрозніваюць антыбіётыкі, якія парушаюць сінтэз клетачных абалонак бактэрый (пеніцыліны і інш.), бялкоў (тэтрацыкліны, хлорамфенікол і інш.), нуклеінавых кіслот (проціпухлінныя антыбіётыкі — аліваміцын, рубаміцын, кармінаміцын і інш.), разбураюць цэласнасць цытаплазматычных мембран (паліены) і біяэнергет. працэсаў (граміцыдзін С). Антыбіётыкі могуць мець шырокі спектр дзеяння (уплываюць на грамдадатныя і грамадмоўныя бактэрыі, напр. тэтрацыкліны) і вузкі (актыўныя пераважна да грамдадатных мікробаў, напр. пеніцылін, рыфампіцын).

На лек. і гасп. мэты антыбіётыкі атрымліваюць гал. чынам мікрабіял. сінтэзам на аснове бактэрый і мікраскапічных грыбкоў (пераважна актынаміцэтаў), частку — хім. сінтэзам або хім. мадыфікацыяй прыродных антыбіётыкаў. Выкарыстоўваюць на лячэнне інфекц. хвароб чалавека, жывёл і раслін, для паскарэння росту і развіцця маладняку, як кансерванты, пры вывучэнні тонкіх механізмаў біяхім. пераўтварэнняў, праблем анкалогіі і функцыянавання жывых клетак.

Літ.:

Молекулярные основы действия антибиотиков: Пер. с англ. М., 1975;

Handbook of Antibiotic Compounds. Vol. 1—7. Boca — Batorn, 1980—81.

т. 1, с. 394

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЯ ЗБРО́Я,

бактэрыяльная зброя, зброя масавага паражэння, дзеянне якой засн. на хваробатворных уласцівасцях мікраарганізмаў — узбуджальнікаў хвароб людзей, жывёл і раслін. Аснова паражальнага дзеяння біялагічнай зброі — бактэрыі, вірусы, грыбы і таксічныя прадукты іх жыццядзейнасці, якія выкарыстоўваюцца ў ваен. мэтах праз жывых заражаных пераносчыкаў захворванняў (насякомых, грызуноў і інш.) або ў выглядзе парашкоў. У якасці біялагічнай зброі могуць выкарыстоўвацца ўзбуджальнікі чумы, тулярэміі, бруцэлёзу, сібірскай язвы, сапу, халеры, сыпнога тыфу, натуральнай воспы, яшчуру, іржы пшаніцы, фітафторы бульбы і інш. Хваробныя мікробы і таксіны ў сумесі з вадкімі і сухімі рэчывамі могуць распырсквацца ці распыляцца з дапамогай спец. ракет, авіяц. бомбаў і кантэйнераў, артыл. снарадаў (мін) і інш. боепрыпасаў, а таксама дыверсантамі. Высокая эфектыўнасць біялагічнай зброі — у яе малой інфіцыравальнай дозе, магчымасці скрытага выкарыстання, цяжкасці індыкацыі, выбіральнасці дзеяння, моцным псіхал. уздзеянні, вял. аб’ёме і складанасці работ па ахове людзей і ліквідацыі наступстваў. Бяспека насельніцтва дасягаецца арганізацыяй калект. і індывід. засцярогі ад біялагічнай зброі (гл. Засцярога ад зброі масавага знішчэння).

Забарона выкарыстоўваць на вайне яды вядома са старажытнасці. Афіцыйна біялагічная зброя забаронена ў Дадатку да 4-й Гаагскай канвенцыі 1907 (Законы і звычаі вайны) і ў Жэнеўскім пратаколе 1925. У 1-ю сусв. вайну Германія першая зрабіла спробу выкарыстання біялагічнай зброі (заражэнне коней узбуджальнікам сапу). Перад 2-й сусв. вайной яна разам з Японіяй вяла падрыхтоўку да выкарыстання такой зброі. У пасляваен. перыяд стварэннем біялагічнай зброі займаліся пераважна краіны з таталітарнымі рэжымамі У 1972 ААН прыняла Канвенцыю аб забароне біялагічнай зброі (набыла сілу ў 1975).

т. 3, с. 171

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАТУЛІ́ЗМ

(ад лац. botulus каўбаса),

вострая атручальна-інфекцыйная хвароба з пераважным пашкоджаннем нерв. сістэмы. У чалавека выклікаецца таксінамі бактэрыі Clostridium batulinum, якія трапляюць у арганізм з няякаснымі харч. прадуктамі (мяса, рыба, кансервы і інш.). Большасць выпадкаў батулізму звязана з дамашнім кансерваваннем. Мікробы батулізму распаўсюджаны ў глебе ў выглядзе спораў, вадзе, кішэчніку рыб, у хворых жывёл і чалавека. У працэсе вегетацыі і размнажэння (пры адсутнасці кіслароду) яны ўтвараюць таксін.

Прыкметы хваробы: агульная слабасць, моцны галаўны боль, параліч мышцаў. У некаторых хворых моташнасць, ірвота, панос, сухасць слізістых рота, смага. Адначасова ці пазней назіраюцца спецыфічныя сімптомы батулізму: парушэнне зроку («туман», «мушкі», «сетка» перад вачамі), дваенне прадметаў, хворы не можа чытаць, расшырэнне зрэнкаў, апушчэнне павекаў, нерухомасць вочных яблыкаў; замінка глытання («камяк» у горле, боль пры глытанні); невыразная мова, слабы, гугнявы голас або поўная яго адсутнасць (афанія). Пры цяжкай форме батулізму — расстройства дыхання (цяжкасць і ціск у грудзях, не хапае паветра, парушэнне рытму дыхання), што можа выклікаць запаленне лёгкіх. Тэмпература цела нармальная або крыху павышаецца, свядомасць захоўваецца. Лячэнне: спецыфічная антытаксічная сываратка і антыбіётыкі, салявыя растворы з аскарбінавай кіслатой, какарбаксілазай, прамыванне страўніка і кішак. Прафілактыка: выкананне асн. санітарна-гігіенічных правілаў апрацоўкі, транспарціроўкі, захавання і прыгатавання харч. прадуктаў. У жывёл атручэнне бывае ад няякаснага корму, у якім ёсць таксін палачкі батулінусу. Крыніца інфекцыі — глеба, а таксама трупы звяркоў (кратоў, мышэй, пацукоў). Асн. сімптомы — параліч мускулатуры, пераважна жавальнага і глытальнага апаратаў. Часцей атручваюцца коні, птушкі, радзей буйн. раг. жывёла і свінні, з пушных звяроў — норкі. Інкубацыйны перыяд 24 гадз — 10—12 дзён. Хвароба цягнецца 1—5, радзей 5—10 дзён. Лек. сродкі: слабіцельныя і полівалентныя сывараткі, прамыванне страўніка растворам марганцавакіслага калію, содай.

П.Л.Новікаў.

т. 2, с. 352

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРДО́ВІКСКАЯ СІСТЭ́МА (ПЕРЫ́ЯД),

ардовік, другая сістэма палеазойскай эратэмы (групы), якая адпавядае другому перыяду палеазойскай эры геал. гісторыі Зямлі. Падсцілаецца кембрыйскай, перакрываецца сілурыйскай сістэмамі. Пачалася каля 500 млн. гадоў назад, доўжылася каля 65 млн. гадоў. Тэрмін ардовікская сістэма (перыяд) уведзены англ. Геолагам Ч.Лапуарсам у 1879. Адклады ардовікскай сістэмы (перыяду) вядомы на ўсіх кантынентах, удзельнічаюць у будове платформавага чахла большасці платформаў Паўн. паўшар’я, выходзяць на паверхню на ўсіх мацерыках Паўн. паўшар’я (на ўскраінах стараж. платформы Гандвана), пашыраны ў складкавых сістэмах Апалачаў, Урала, Алтая, Саянаў і інш. У сярэдзіне ардовіку адбылося максімальнае пашырэнне мора на ўскраіны платформаў, дзе намнажаліся асадкі магутнасцю да 500 м (вапнякі, гліны, пяскі). Ва ўнутр. частках геасінклінальных паясоў, занятых глыбакаводнымі морамі, на тэр. Паўн. Амерыкі, на З Паўд. Амерыкі, у Еўразіі і на ПдУ Аўстраліі ўтварыліся адклады магутнасцю да 10 км (абломкавыя, вулканічныя, крамяністыя, карбанатныя). У канцы ардовіку пачалася каледонская складкавасць. Клімат на тэр. сучасных Паўн. Амерыкі, Грэнландыі, Паўн. Еўропы, б. ч. Азіі і Аўстраліі быў гарачы і сухі, астатняя ч. сучаснай сушы адпавядала прыпалярным абласцям, дзе знойдзены сляды ардовікскага мацерыковага зледзянення. Тэр. Беларусі ў ардовіку была сушай, якую абмывала мора на крайнім ПдЗ у Брэсцкай упадзіне (дзе намножылася да 40 м асадкаў) і на ПнЗ у межах Прыбалтыйскай монакліналі (магутнасць асадкаў да 150 м). Намнажаліся карбанатныя і гліністыя пароды — вапнякі з праслоямі мергелю, аалітамі і глаўканітам, гліны і гліністыя вапнякі. У арганічным свеце ардовікскай сістэмай (перыядам) прадстаўлены амаль усе тыпы і большасць класаў марскіх беспазваночных жывёл, сярод раслін пашыраны бактэрыі і водарасці. З’явіліся першыя прымітыўныя пазваночныя; беспазваночныя і расліны выйшлі на сушу. Найб. важныя для расчлянення адкладаў групы ардовікскай фауны: грапталіты, канадонты, трылабіты, брахіяподы і каланіяльныя каралы. Карысныя выкапні: нафта і газ (у Паўн. Амерыцы), гаручыя сланцы (Прыбалтыка), фасфарыты, руды жалеза, марганцу, медзі, свінцу, цынку, кобальту, ёсць золата, рэдказямельныя металы, хрызатыл-азбест, графіт. Стратыграфічны падзел ардовікскай сістэмы (перыяду) у кожным рэгіёне асобны. Найб. пашыраны — на 3 аддзелы і 6 ярусаў. Да ніжняга аддзела адносяць трэмадокскі і арэнігскі ярусы, да сярэдняга — ланвірнскі, ландэйльскі і карадокскі, верхні ўключае ашгільскі ярус. Гэты падзел пакладзены ў аснову рэгіянальнай стратыграфічнай схемы ардовікскіх адкладаў Беларусі (1981), у якой на падставе характэрных комплексаў брахіяподаў і імшанак вылучаны больш дробныя адзінкі — рэгіянальныя гарызонты.

Літ.:

Ропот В.Ф., Пушкин В.И. Ордовик Белоруссии. Мн., 1987;

Никитин И.Ф. Ордовик // Стратиграфия и палеонтология древнейшего фанерозоя. М., 1984.

А.С.Махнач, У.І.Пушкін.

т. 1, с. 475

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)