АТМАСФЕ́РА (ад грэч. atmos пара + сфера) Зямлі, газавая абалонка вакол Зямлі, якая ўтрымліваецца яе прыцяжэннем, верціцца разам з ёю і забяспечвае жыццядзейнасць расліннага і жывёльнага свету. Маса атмасферы каля 5,15×10​15 т (адна мільённая доля масы Зямлі). Палавіна яе заключана ў слоі да 5 км, 90% — да 16 км, вышэй за 100 км — толькі мільённая частка. Выразнай верхняй мяжы не існуе, атмасфера паступова пераходзіць у касм. прастору (гл. Космас). За фіз. мяжу прымаюць выш. 1000—1200 км, тэарэтычная мяжа — 42 тыс. км, дзе цэнтрабежная сіла вярчэння Зямлі ўраўнаважваецца яе прыцяжэннем. З вышынёй мяняюцца фіз. ўласцівасці атмасферы: ціск, шчыльнасць, т-ра. Ціск атмасферы на ўзр. м. на 1 см² 1013,25 гПа, на выш. 5 км ён змяншаецца на ½. Залежнасць ціску ад вышыні выражаецца бараметрычнай формулай. Шчыльнасць паветра на ўзр. м. 1,27—1,30 кг/м³, на паверхні Зямлі ў Еўропе ў сярэднім 1,25 кг/м³, на выш. 20 км 0,087 кг/м³, на выш. 750 км менш за 10-13 кг/м³. Т-ра характарызуецца больш складанай залежнасцю ад вышыні.

Будова. Атмасфера мае выразную слаістую структуру. У аснову падзелу пакладзена вертыкальнае размеркаванне т-ры, паводле якога вылучаюць сферы і слаі-паўзы паміж імі. Ніжняя частка атмасферы — трапасфера, знаходзіцца над паверхняй Зямлі да выш. 8—10 км у палярных, 16—18 км у экватарыяльных шыротах. Характарызуецца паніжэннем т-ры з вышынёй каля 6,5 °C на 1 км. Пераходнаму слою (таўшчынёй ад соцень метраў да 2 км) паміж трапасферай і стратасферайтрапапаўзе — уласціва ізатэрмія. Стратасфера распасціраецца да 50 км, у ніжняй частцы яе т-ра пастаянная, з выш. 25—30 км павышаецца ў сярэднім на 0,3 °C на 100 мазанасферы). Паміж стратасферай і мезасферай размяшчаецца стратапаўза, у якой т-ра блізкая да 0 °C. У мезасферы (да выш. 80 км) т-ра зніжаецца на 0,35 °C на 100 м вышыні (да -90 °C), развіваецца канвекцыя (вертыкальнае перамешванне), утвараюцца серабрыстыя воблакі. У мезасферы адзначаецца іанізацыя часцінак газу. Мезапаўза знаходзіцца на выш. 80—85 км, ёй уласціва ізатэрмія ці слабае зніжэнне т-ры. Вышэй размешчана тэрмасфера (да 800—1000 м), дзе т-ра зноў рэзка павышаецца за кошт паглынання прамога сонечнага выпрамянення і дасягае 1500—2000 °C. Тэрмасфера адпавядае іанасферы, дзе паветра моцна іанізаванае ў выніку дысацыяцыі малекул газаў пад уздзеяннем ультрафіялетавай, рэнтгенаўскай і карпускулярнай радыяцыі, што з’яўляецца прычынай высокай т-ры, палярных ззянняў, свячэння атмасферы. Знешняя атмасфера — экзасфера, дзе адбываецца дысіпацыя газаў, іх часцінкі (пераважна атамы вадароду) рассейваюцца ў касм. прасторы і ўтвараюць карону Зямлі.

Састаў. Атмасфера паветра — сумесь газаў з дамешкам завіслых цвёрдых і вадкіх часцінак. Паводле хім. саставу вылучаюць гамасферу (да 90—100 км) з нязменнымі суадносінамі асн. газаў і гетэрасферу, дзе стан газаў і іх суадносіны вельмі зменлівыя. У сухім паветры гамасферы азот складае 78%, кісларод — 21, аргон — 0,9, вуглякіслы газ — 0,03%, астатняе — крыптон, ксенон, неон, гелій, вадарод, азон, ёд, радон, метан, аміяк і інш. Сучасны састаў атмасферы спрыяльны для жыцця на Зямлі: кісларод служыць для дыхання жывых арганізмаў, вуглякіслы газ — для стварэння арган. рэчываў раслін у працэсе фотасінтэзу. У фіз. працэсах, якія адбываюцца ў атмасферы, найб. актыўныя вадзяная пара, азон, вуглякіслы газ і атм. аэразолі. Вадзяная пара канцэнтруецца ў ніжніх слаях трапасферы (ад 0,1—0,2% у палярных шыротах да 3% у экватарыяльных), з вышынёй яе колькасць памяншаецца (на выш. 1,5—2 км на 50%), у нязначнай колькасці ёсць да выш. 15—20 км. Азон затрымлівае асн. частку ультрафіялетавага выпрамянення Сонца, гібельнага для ўсяго жывога на Зямлі. Канцэнтруецца ў азанасферы. Вуглякіслы газ здольны паглынаць даўгахвалевае выпрамяненне Зямлі і ствараць парніковы эфект атмасферы. Колькасць вуглякіслага газу павялічваецца ў сувязі з узмацненнем антрапагеннага ўздзеяння на атмасферу (мяркуюць, што да 2000 г. яго будзе 0,0375%). Атмасферныя аэразолі (завіслыя ў паветры цвёрдыя і вадкія часцінкі) таксама затрымліваюць цеплавое выпрамяненне паверхні Зямлі і ўплываюць на бачнасць у атмасферы. Прымеркаваныя да прыземных слаёў, частка іх пранікае ў стратасферу, дзе на выш. 15—20 км утвараецца аэразольны слой Юнге.

У гетэрасферы павялічваецца колькасць лёгкіх газаў, адбываецца дысацыяцыя малекул паветра і значная іанізацыя. Выразная змена стану газаў атмасферы адбываецца на выш. 100—210 км, дзе пераважае атамарны кісларод над малекулярнымі азотам і кіслародам. На выш. 500 км малекулярнага кіслароду практычна няма, вышэй за 600 км пераважае гелій, на выш. ад 2 да 20 тыс. км пашырана вадародная карона Зямлі. З верхняй часткай атмасферы звязаны радыяцыйныя паясы Зямлі: унутраны на выш. 500—1600 км і вонкавы, утвораныя электронамі з высокай энергіяй.

Паветраныя плыні. Вынікам неаднароднасці т-ры атмасферы па вертыкалі і нераўнамернага награвання палярных і экватарыяльных шырот, сухазем’я і мора з’яўляецца сістэма буйнамаштабных працэсаў — агульная цыркуляцыя атмасферы. Да яе належаць плыні ніжняй часткі трапасферы: пастаянныя — пасаты і сезонныя — мусоны, заходні перанос паветраных мас, канвекцыя, цыклоны і антыцыклоны і інш. Паблізу трапапаўзы, дзе існуе кантрастнасць т-ры, а таксама ў азонавым слоі на выш. 20—25 км утвараюцца магутныя струменныя плыні. Скорасць ветру ў верхняй стратасферы дасягае 100—150 м/сек. У тэрмасферы яна павялічваецца, тут адбываюцца прыліўныя рухі пад уздзеяннем Месяца і Сонца. Рухомасць атмасферы надае ёй ролю рэгулятара цеплаабмену Зямлі з космасам, радыяцыйнага і воднага балансу. Працэсы ўзаемадзеяння атмасферы і акіяна істотна ўплываюць на клімат Зямлі. Атмасфера мае электрычнае поле, якое фарміруецца пад уздзеяннем адмоўнага электрычнага поля Зямлі.

Паходжанне. Сучасная зямная атмасфера мае другаснае паходжанне, яна ўтварылася пасля ўзнікнення Зямлі ў выніку ўзаемадзеяння працэсу дэгазацыі з пародамі літасферы. Састаў атмасферы зменьваўся на працягу ўсёй гісторыі Зямлі, у тым ліку і пад уплывам дзейнасці чалавека. Вылучаюць 2 асн. этапы — бескіслародны (2 млрд. гадоў назад) і кіслародны; маса кіслароду значна павялічылася ў фанеразоі пасля з’яўлення расліннасці на сушы.

Вывучэнне атмасферы пачалося ў антычны час. Навука пра атмасферу — метэаралогія сфарміравалася ў 19 ст. Для назіранняў за атмасферай створана сетка метэаралагічных станцый і пастоў, выкарыстоўваюцца метады вертыкальнага зандзіравання атмасферы, радыёлакацыя, пеленгацыя, самалёты, аўтам. аэрастаты, спец. судны, ракеты і метэаралагічныя спадарожнікі. У Беларусі назіранне за атмасферай праводзіцца на метэастанцыях гідраметэаралагічнай службы, у прамысл. цэнтрах вывучаюць і прагназіруюць ступені тэхнагеннага забруджвання; праводзяцца даследаванні радыенукліднага забруджвання атмасферы пасля катастрофы на Чарнобыльскай АЭС.

Літ.:

Атмосфера: Справ. Л., 1991;

Будыко М.И., Ронов А.Б., Яншин А.Л. История атмосферы. Л., 1985;

Бримблкумб П. Состав и химия атмосферы: Пер. с англ. М., 1988.

Г.В.Валабуева.

т. 2, с. 74

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРА́СЛАЎСКІЯ АЗЁРЫ,

дзяржаўны нацыянальны парк Беларусі. Створаны ў 1995 на тэр. цэнтральнай ч. Браслаўскага р-на Віцебскай вобл. ў мэтах захавання тыповага для Бел. Паазер’я прыроднага комплексу Браслаўскай групы азёр. Пл. 71,5 тыс. га, працягласць з Пн на Пд 56 км, з З на У ад 7 да 29 км. Найб. азёры (басейн р. Друйка): Дрывяты, Снуды, Струста, Войса, Неспіш, Недрава, Богінскае воз., Воласа Паўн., Воласа Паўд., Бярэжа, Абаб’е і інш. Лясы займаюць каля 33 тыс. га (46%), с.-г. ўгоддзі і азёры — па 12 тыс. га (па 17%).

Рэльеф Браслаўскіх азёр — узгорыста-марэнны азёрны; у паўн. і сярэдняй ч.Браслаўская града, у паўд.Дзісенская нізіна. Марэнныя грады, пагоркі мяжуюцца з глыбокімі міжпагоркавымі паніжэннямі з азёрамі, пашыраны камы, озы. Клімат умерана цёплы, вільготны. Іхтыяфауна азёр багатая: вугор, судак, рапушка еўрапейская (сялява) — усяго 30 відаў рыб, у т. л. 27 абарыгенных. У воз. Воласа Паўд. пашыраны лімнакалянус (рэліктавы рачок), мізіда рэліктавая, понтапарэя, бакаплаў Паласа, занесеныя ў Чырв. кнігу Беларусі, з млекакормячых распаўсюджаны дзік, казуля, лось, зайцы, ліс, янотападобны сабака, воўк, лясная куніца, вавёрка, выдра, бабёр, норка. У арнітафауне да 85% усіх птушак, якія гняздуюцца на Беларусі: беркут, арлан-белахвост, скапа, малы падворлік, каршачок, шэры журавель, чорны бусел, малая паганка, вял. бугай, чорнаваллёвая гагара, белая курапатка, сярэдні кулон, залацісты сявец, дзербнік, касматаногі сыч, няясыць даўгахвостая (уральская), трохпальцы дзяцел, уюрок і інш., з якіх 45 відаў занесены ў Чырв. кнігу. Цецеруковыя, кулікі, вадаплаўная дзічына маюць прамысл. значэнне. У флоры рэгіёна больш за 500 відаў, з якіх каля 20 рэдкія і знікаючыя: карлікавая бяроза, ворлікі звычайныя (аквілегія), гарлачык жоўты малы, званочак персікалісты, марошка прысадзістая, лінея паўночная, чараўнік зеленакветкавы, неатыянта клабучковая, першацвет веснавы, пералеска высакародная, шпажнік чарапіцавы і інш. Адасоблены некалькі лясных масіваў: Багінскі (каля 17 тыс. га), Друйская лясная дача (каля 5,6 тыс. га), Бяльмонт (каля 12 тыс. га). Выяўлены асабліва каштоўныя біягрупы раслін лістоўніцы сібірскай, бярозы павіслай і карэльскай, ліпы драбналістай.

На тэрыторыі нац. парку і ахоўнай зоны 25 помнікаў прыроды (напр., участкі ландшафтаў — а-вы Гарадзішча і Церанцейка, Ахрэмавіцкі парк «Бяльмонты», валуны, дрэвы). Тут размешчаны дзіцячы санаторый «Браслаў», турбаза «Браслаўскія азёры», лагеры адпачынку студэнтаў і выкладчыкаў Бел. акадэміі фіз. выхавання і спорту і Бел. ун-та інфарматыкі і радыёэлектронікі.

П.І.Лабанок.

т. 3, с. 248

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫСОКАМАЛЕКУЛЯ́РНЫЯ ЗЛУЧЭ́ННІ,

палімеры, хімічныя злучэнні з малекулярнай масай ад некалькіх тысяч да дзесяткаў мільёнаў. Малекулы высокамалекулярных злучэнняў (макрамалекулы) складаюцца з тысяч атамаў, звязаных хім. сувязямі. Паводле паходжання падзяляюць на прыродныя, ці біяпалімеры (напр., бялкі, нуклеінавыя кіслоты, поліцукрыды), і сінтэтычныя (напр., поліэтылен, поліаміды), паводле саставу — на неарганічныя палімеры, арганічныя і элементаарганічныя палімеры.

У залежнасці ад размяшчэння ў макрамалекуле атамаў і груп атамаў (манамерных звёнаў) адрозніваюць высокамалекулярныя злучэнні: лінейныя, макрамалекулы якіх утвараюць адкрыты лінейны ланцуг (напр., каўчук натуральны) ці выцягнутую ў ланцуг паслядоўнасць цыклаў (напр., цэлюлоза); разгалінаваныя, макрамалекулы якіх — лінейны ланцуг з адгалінаваннямі (напр., крухмал); сеткавыя — трохвымерная сетка з адрэзкаў высокамалекулярных злучэнняў ланцуговай будовы (напр., ацверджаныя фенола-альдэгідныя смолы). Макрамалекулы аднолькавага хім. саставу могуць быць пабудаваны з манамерных звёнаў рознай прасторавай канфігурацыі (гл. Прасторавая ізамерыя). Палімеры з адвольным чаргаваннем стэрэаізамерных звёнаў наз. атактычнымі. Стэрэарэгулярныя палімеры складаюцца з аднолькавых ці розных, але размешчаных у ланцугу ў пэўнай паслядоўнасці стэрэаізамераў. Паводле тыпу манамерных звёнаў палімеры падзяляюць на гомапалімеры (палімер утвораны адным манамерам, напр. поліэтылен) і супалімеры (палімер утвораны з розных манамерных звёнаў, напр. бутадыен-стырольныя каўчукі). Асн. фіз.-хім. і мех. ўласцівасці высокамалекулярных злучэнняў: здольнасць утвараць высокатрывалыя валокны і плёнкі палімерныя, набракаць перад растварэннем і ўтвараць высокавязкія растворы, здольнасць да вял. абарачальных дэфармацый (высокаэластычнасць). Гэтыя ўласцівасці абумоўлены высокай малекулярнай масай, ланцуговай будовай і гнуткасцю макрамалекул. У лінейных высокамалекулярных злучэннях яны выяўлены найб. поўна. Трохвымерныя высокамалекулярныя злучэнні з вял. частатой сеткі нерастваральныя, няплаўкія і не здольныя да высокаэластычных дэфармацый. Высокамалекулярныя злучэнні могуць існаваць у крышт. і аморфным фазавым стане. Аморфныя высокамалекулярныя злучэнні акрамя высокаэластычнага могуць знаходзіцца ў шклопадобным і вязкацякучым станах. Высокамалекулярныя злучэнні з нізкай (ніжэй за пакаёвую) т-рай пераходу з шклопадобнага ў высокаэластычны стан наз. эластамерамі, з высокай — пластыкамі (гл. Пластычныя масы).

Палімеры маюць малую шчыльнасць (900—2200 кг/м³), нізкі каэф. трэння і малы знос, выдатныя дыэл. і аптычныя ўласцівасці, высокую хім. ўстойлівасць да к-т, шчолачаў і інш. агрэсіўных рэчываў. Прыродныя высокамалекулярныя злучэнні, якія ўтвараюцца ў клетках жывых арганізмаў у выніку біясінтэзу, вылучаюць з расліннай і жывёльнай сыравіны. Сінт. высокамалекулярныя злучэнні атрымліваюць полімерызацыяй і полікандэнсацыяй. Асн. тыпы палімерных матэрыялаў — пластычныя масы, гума, валокны хімічныя, лакі, фарбы, эмалі, клеі, герметыкі, іонаабменныя смолы выкарыстоўваюць у розных галінах нар. гаспадаркі і побыце. Біяпалімеры складаюць аснову жывых арганізмаў і ўдзельнічаюць ва ўсіх працэсах іх жыццядзейнасці.

М.Р.Пракапчук.

т. 4, с. 322

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЗВА́ЖКАСЦЬ,

фізічны стан цела — складальнай часткі рухомай мех. сістэмы, пры якім вонкавыя сілы, што дзейнічаюць на цела і яго рух, не выклікаюць узаемнага ціску адных часцінак цела на іншыя. Узнікае пры свабодным руху цела ў гравітацыйным полі, калі такі рух з’яўляецца паступальным (напр., падзенне цела па вертыкалі, рух па арбіце штучнага спадарожніка Зямлі, палёт касм. карабля).

На цела, якое знаходзіцца ў гравітацыйным полі Зямлі на апоры (ці падвесе), дзейнічаюць сіла цяжару і ў процілеглым напрамку сіла рэакцыі апоры (ці сіла нацяжэння падвесу), што вядзе да ўзнікнення ўзаемнага ціску адной часткі цела на другую. У целе ўзнікаюць дэфармацыі і ўнутр. напружанні, якія чалавек успрымае як адчуванне ўласнай вагі (важкасці). У залежнасці ад умоў сіла рэакцыі апоры можа адрознівацца ад сілы цяжару нерухомага цела на паверхні Зямлі. Напр., калі касм. карабель рэзка павялічвае скорасць, касманаўта прыціскае да крэсла сіла, у некалькі разоў большая за нармальную вагу, што ўспрымаецца як павелічэнне ўласнай вагі касманаўта (т.зв. перагрузка). У стане свабоднага падзення на цела дзейнічае толькі сіла цяжару, а інш. вонкавыя сілы, у т. л. і сілы рэакцыі апоры, адсутнічаюць, што вядзе да знікнення ўзаемнага ціску адной часткі цела на другую, узнікае бязважкасць, якую чалавек успрымае як страту вагі.

Ва ўмовах бязважкасці зменьваецца шэраг функцый жывога арганізма: абмен рэчываў (асабліва водна-салявы), кровазварот, назіраюцца расстройствы вестыбулярнага апарату і інш. Неспрыяльны ўплыў бязважкасці на арганізм чалавека можна папярэдзіць або абмежаваць пры дапамозе фіз. практыкаванняў і заняткаў на спец. трэнажорах. Вынікі працяглых касм. палётаў сведчаць аб тым, што бязважкасць не з’яўляецца небяспечнай для арганізма чалавека і касманаўты ў такім стане могуць доўгі час жыць і працаваць, але павінны праходзіць курс рэабілітацыі пры вяртанні ў звычайныя гравітацыйныя ўмовы на паверхні Зямлі. Бязважкасць улічваецца пры стварэнні прыбораў і агрэгатаў касм. лятальных апаратаў. Напр., для вады і інш. вадкасцей выкарыстоўваюцца эластычныя пасудзіны і герметычныя кантэйнеры, якія папярэджваюць распырскванне; цыркуляцыя паветра забяспечваецца вентылятарамі і інш. Стан бязважкасці дае магчымасць праводзіць фізіка-тэхн. эксперыменты па вырошчванні паўправадніковых крышталёў, стварэнні звышправодных і магнітных матэрыялаў з аднародным размеркаваннем рэчыва па ўсім аб’ёме.

Літ.:

Левантовский В.И. Механика космического полета в элементарном изложении. 3 изд. М., 1980.

А.І.Болсун.

т. 3, с. 393

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЮ́ТА

(італьян. valuta літар. кошт, вартасць),

1) грашовая адзінка краіны і яе тып (залатая, сярэбраная, папяровая, крэдытная).

2) Грашовыя знакі замежных краін (крэдытныя білеты, манеты і інш.).

3) Крэдытныя сродкі абарачэння і плацяжу, выражаныя ў замежных грашовых адзінках (вэксалі, чэкі, сертыфікаты і інш.).

4) Міжнар. і еўрап. разліковыя адзінкі СДР, ЭКЮ — калектыўная валюта. Па сваёй сутнасці валюта — гэта грошы ў міжнар. разліках. Да 19 ст. існавалі сярэбраны монаметалізм і біметалізм (адначасовае абарачэнне сярэбраных і залатых манет), у 19 ст. ў абарачэнні была залатая валюта, на сучасным этапе — папяровая (неразменныя на золата і серабро банкаўскія білеты і папяровыя грошы). У залежнасці ад рэжыму выкарыстання валюта бывае: свабодна канверсаваная, ці поўнасцю абарачальная (абменьваецца на любую замежную валюту і не мае абмежаванняў у валютных аперацыях), часткова канверсаваная (мае абмежаванні ў валютных аперацыях) і неканверсаваная (замкнутая, неабарачальная). Да свабодна канверсаваных валют адносяцца долары ЗША і Канады, ням. марка, фунт стэрлінгаў Вялікабрытаніі, яп. іена, франц. і швейцарскі франкі і некаторыя інш., якія без абмежаванняў выкарыстоўваюцца ў міжнар. эканам. аперацыях і для стварэння валютных рэзерваў (рэзервовая, ключавая валюта). Часткова канверсаваная валюта краін, дзе існуюць валютныя абмежаванні, як правіла, для рэзідэнтаў (фіз. і юрыд. асоб гэтай краіны), а таксама на пэўныя валютныя аперацыі (напр., на рух капіталаў і крэдытаў). Неканверсаваная валюта ў краінах, дзе няма эканам. стабільнасці і існуюць абмежаванні і забароны на ўвоз і вываз валюты, яе абмен, куплю-продаж, а таксама інш. меры валютнага рэгулявання з мэтай стрымаць выкарыстанне дэфіцытнай замежнай валютай. Да неканверсаванай адносіцца і валюта Беларусі (1996). Свабодна абарачальная нац. валюта і трывалы валютны рэзерв — паказчык эканам. стабільнасці краіны. Для выкарыстання валюты ўстаноўлены пэўныя формы і правілы (гл. Валютная біржа, Валютны курс, Валютны парытэт, Валютныя аперацыі і інш.).

Існуюць таксама паняцці валюты цаны, ці валюты здзелкі (грашовая адзінка, у якой вызначаецца цана тавару ў кантракце па знешнегандл. аперацыі ці выражаецца сума міжнар. крэдыту), валюты плацяжу, ці валюты разлікаў (грашовая адзінка, у якой у кантракце вызначаецца аплата на знешнеэканам. аперацыі ці пагашэнне міжнар. крэдыту), валюты вэксаля (грашовая адзінка, у якой прад’яўлены вэксаль), валюты клірынгу (грашовая адзінка, на аснове якой адкрываюцца ўзаемныя рахункі краін для безнаяўных узаемных міжнар. разлікаў) і інш.

Г.І.Краўцова.

т. 3, с. 496

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАГРАФІ́ЧНЫЯ КА́РТЫ,

паменшаныя абагульненыя адлюстраванні зямной паверхні на плоскасці, якія паказваюць размяшчэнне, стан і сувязі розных прыродных і грамадскіх з’яў, іх змены ў часе, развіцці і перамяшчэнні. Складаюцца з геагр. элементаў, абумоўленых тэмай і прызначэннем карты. На свабодных месцах геаграфічных картаў размяшчаюць графікі і тэксты, што дапамагаюць пры выкарыстанні (умоўныя знакі, легенда), графікі для вымярэння адлегласцей і інш. Ад інш. адлюстраванняў зямной паверхні (аэраздымкаў, малюнкаў і інш.) адрозніваюцца матэм. законам пабудовы карты (картаграфічныя праекцыі), спосабам графічнага адлюстравання рэчаіснасці (умоўныя знакі) і генералізацыяй картаграфічнай. Выдаюцца як самаст. творы, разам з манаграфічнай л-рай аб прыродзе, часам складаюць серыю — атласы геаграфічныя. Класіфікуюцца паводле зместу, маштабу, тэр. ахопу, прызначэння.

Паводле зместу адрозніваюць агульнагеагр. і тэматычныя карты. Агульнагеаграфічныя карты адлюстроўваюць рэльеф, гідраграфію, расліннасць, населеныя пункты, шляхі зносін, дзяржавы і адм. граніцы. У гэты раздзел уваходзяць і тапаграфічныя карты. Тэматычныя карты паказваюць на фоне асн контураў зямной паверхі дадатковыя элементы і з’явы, што часта не маюць на зямной паверхні бачных контураў (ападкі, працягласць вегетац. перыяду, нахілы рэк і інш.), унутр. асаблівасці (салёнасць вод). Яны падзяляюцца на карты прыроды — агульныя фіз.-геагр., геал., геафіз., метэаралагічныя, кліматычныя, глебавыя, рэльефу (геамарфалагічныя, гіпсаметрычныя, батыметрычныя, марфаметрычныя), расліннасці, жывёльнага свету, гідралагічныя, ландшафтнага і прыроднага раянавання і інш. (гл. карты да арт. Геабатанічнае раянаванне, Геахімічнае раянаванне, Геамарфалагічнае раянаванне), карты сацыяльна-эканамічныя адлюстроўваюць грамадскія з’явы (насельніцтва, адукацыю, ахову здароўя і інш.), эканамічныя карты — становішча і развіццё гаспадаркі (прам-сці. сельскай і лясной гаспадаркі, транспарту, прыродных рэсурсаў і інш.). Паводле тэмы геаграфічныя карты падзяляюцца на галіновыя, або прыватныя (асобных галін прам-сці, т-ры, с.-г. і інш.), агульныя (агульнакліматычныя і інш.) і комплексныя; залежна ад ступені абагульнення — на аналітычныя і сінтэтычныя (сінаптычныя карты і інш.). Геаграфічныя карты бываюць буйнамаштабныя, або тапаграфічныя (1:10 000, 1:25 000, 1:50 000, 1:100 000 і 1:200 000), сярэднемаштабныя, або аглядна-тапаграфічныя (1:300 000, 1:500 000, 1:1 000 000), дробнамаштабныя, або аглядныя (драбней за 1:1 000 000). Паводле тэр. ахопу падзяляюцца на сусветныя, мацерыкоў, а таксама акіянаў, дзяржаў, абласцей і раёнаў; паводле прызначэння — на навук., даведачныя, турысцкія, дарожныя, навігацыйныя і інш.

Геаграфічныя карты ствараюцца з дапамогай здымкі (тапаграфічнай, аэрафотатапаграфічнай, касмічнай, спецыяльнай) або камеральным шляхам у выніку апрацоўкі разнастайных крыніц. Выкарыстоўваюцца як даведнікі на мясцовасці, дапаможнікі навучання, пры вырашэнні нар.-гасп., вайсковых і навук. задач. На Беларусі геаграфічныя карты складаюць і друкуюць на Мінскай картаграфічнай ф-цы, у картографа-геадэзічным аб’яднанні Белгеадэзія і інш.

Р.А.Жмойдзяк.

т. 5, с. 113

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЕЛАРУ́СКІ ДЗЯРЖА́ЎНЫ УНІВЕРСІТЭ́Т (БДУ). Засн. ў 1921 у Мінску паводле пастановы ЦВК БССР. У стварэнні БДУ удзельнічалі акадэмік Я.Ф.Карскі, прафесары В.П.Волгін, Л.С.Мінор, У.І.Пічэта (1-ы рэктар БДУ), Дз.М.Пранішнікаў, Ф.Ф.Турук, А.Ф.Фартунатаў, К.А.Ціміразеў і інш. Сярод першых выкладчыкаў бел. вучоныя Я.І.Барычэўскі, Ц.М.Годнеў, М.В.Доўнар-Запольскі, К.М.Міцкевіч (Я.Колас), М.М.Нікольскі, У.М.Перцаў, А.Смоліч, М.М.Шчакаціхін, М.А.Янчук і інш. Для работы ў БДУ таксама запрошаны вучоныя з Масквы, Петраграда, Кіева і інш.; навук. л-ра паступіла з АН РСФСР, Рас. кніжнай палаты, Кіеўскага, Маскоўскага і Петраградскага ун-таў; перададзены б-кі Карскага, Янчука і інш. У 1928—31 пабудаваны універсітэцкі гарадок. На базе асобных ф-таў БДУ у Мінску адкрыты ін-ты: мед., пед., юрыд., нар. гаспадаркі, шэраг галіновых ВНУ, якія ў 1933 аб’яднаны ў Бел. політэхн. ін-т. У гады Вял. Айч. вайны навуч.-матэрыяльная база ун-та знішчана. Заняткі аднавіліся ў 1943 на ст. Сходня (пад Масквой), з вер. 1944 — у Мінску.

У 1995/96 навуч. г. ф-ты: біял., геагр., гіст., журналістыкі, механіка-матэм., прыкладной матэматыкі і інфарматыкі, радыёфізікі і электронікі, фіз., філал., філас.-эканам., хім., юрыд., міжнар. адносін, дауніверсітэцкай падрыхтоўкі, падрыхтоўчы для замежных грамадзян, павышэння кваліфікацыі выкладчыкаў ВНУ, павышэння кваліфікацыі па прыкладной матэматыцы і ЭВМ, спецыяльны ф-т бізнесу і інфарм. Тэхналогій; 14,4 тыс. студэнтаў, на 121 кафедры 1410 выкладчыкаў, у т. л. 190 прафесараў і д-роў навук, больш за 800 дацэнтаў і канд. навук. Навучанне дзённае і завочнае. Аспірантура з 1927, дактарантура з 1988. Мае 3 НДІ, друкарню, выд-ва, інфарм.-вылічальны і навук.-інж. цэнтры, Бібліятэку фундаментальную БДУ, 3 музеі, навуч.-доследную гаспадарку «Шчомысліца», біял. станцыю «Нарач», навуч.-вытв. геагр. базу «Заходняя Бярэзіна». Выдае шматтыражную газ. «Беларускі універсітэт» (з 1923), навук. час. «Веснік БДУ» (з 1969, у 4 серыях).

Рэктары ун-та: У.І.Пічэта (1921—29), І.П.Каранеўскі (1929—32), Ермакоў (1932—33), В.Н.Дзякаў (1933—37), П.В.Саевіч (1937), Бладыка (1937—38), У.С.Бабраўніцкі (1938—39), П.П.Савіцкі (1939—47), У.А.Тамашэвіч (1947—49), І.С.Чымбург (1949—52), К.І.Лукашоў (1952—57), А.Н.Сеўчанка (1957—72), У.М.Сікорскі (1972—78), У.А.Белы (1978—83), Л.І.Кісялеўскі (1983—90), Ф.М.Капуцкі (1990—96), з 16.1.1996 в.а. рэктара П.Дз.Кухарчык.

Літ.:

Беларускі дзяржаўны універсітэт, 1921—27: Да 10-й гадавіны Кастрычніцкай рэвалюцыі. Мн., 1927;

Кожушков А.И., Яновский О.А. Белорусский университет: Хроника событий (1919—1989). Мн., 1990;

Белорусский ордена Трудового Красного Знамени государственный университет имени В.И.Ленина: (Краткий библиогр. указ.). Мн., 1971.

т. 2, с. 443

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАГРА́ФІЯ

(ад геа... + ...графія),

сістэма прыродазнаўчых і грамадскіх навук аб прыродных, тэр.-вытв. і сац.-тэр. комплексах Зямлі і іх кампанентах. Вывучае геаграфічную абалонку Зямлі. Грунтуецца на натуральных і грамадскіх законах развіцця, улічвае ўплыў чалавечай дзейнасці на прыроду, разглядае грамадскую вытв-сць у рэальных прыродных умовах. У цыкл прыродазнаўчых навук уваходзяць фізічная геаграфія (уключае агульнае землязнаўства і ландшафтазнаўства), геамарфалогія, кліматалогія, метэаралогія, акіяналогія, гляцыялогія, гідралогія сушы (азёразнаўства і гідралогія рэк), геаграфія глеб, біягеаграфія (геаграфія жывёл і геаграфія раслін), палеагеаграфія і інш.; у цыкл грамадскіх — сацыяльна-эканамічная геаграфія (уключае эканамічную геаграфію), сацыяльная геаграфія, геаграфію насельніцтва, рэкрэацыйная геаграфія, палітычная геаграфія. Асобнае месца займае картаграфія. Да геаграфіі адносяцца краіназнаўства (абагульняе звесткі аб прыродзе, насельніцтве і гаспадарцы асобных краін) і краязнаўства. Да геаграфіі прымыкаюць дысцыпліны прыкладнога кірунку (напр., геаграфія медыцынская, ваенная геаграфія і інш.). Выкарыстоўвае экспедыцыйны, стацыянарны, матэм. і тыпалагічны аналізы, параўнальна-апісальны, статыстычны, картаграфічны і інш. метады даследавання.

Геаграфія ўзнікла за некалькі тысячагоддзяў да н.э. Як навука пачала развівацца ў Стараж. Егіпце, краінах Пярэдняй Азіі, Індыі, Кітаі, потым у Стараж. Грэцыі і Рыме. Напачатку абмяжоўвалася зборам інфармацыі пра краіны і моры ў сувязі з ваен. экспансіямі. Сярод тагачасных вядомых вучоных Герадот, Арыстоцель, Эратасфен, Гіпарх, Страбон, Пталамей. Адраджэнне навук пра Зямлю ў Еўропе пачалося з 14—15 ст. (гл. Вялікія геаграфічныя адкрыцці, Геаграфічныя адкрыцці). У 1-й пал. 19 ст. ў многіх краінах Еўропы, Азіі і Амерыкі ўзніклі геагр. т-вы.

Звесткі пра геаграфію Беларусі ёсць у летапісах 11—12 ст., бел. і польскіх хроніках 14—16 ст., у працах вучоных 18—19 ст. І.І.Ляпёхіна, В.М.Севергіна, І.І.Жылінскага і інш. Значны ўклад у развіццё комплексных геагр. даследаванняў у 20 ст. зрабіў А.А.Смоліч — аўтар першага падручніка па геаграфіі Беларусі. Даследаваны рэльеф Беларусі, яго паходжанне і развіццё, ландшафты, фіз.-геагр. і геамарфалагічныя раёны (Л.М.Вазнячук, В.М.Губін, Б.М.Гурскі, В.А.Дзяменцьеў, К.І.Лукашоў, В.К.Лукашоў, Г.І.Марцінкевіч, А.В.Мацвееў, Г.Ф.Мірчынк, Р.І.Сачок, П.А.Туткоўскі, М.М.Цапенка і інш.), кліматычныя рэсурсы, феналогія, агракліматычнае раянаванне (А.І.Кайгарадаў, У.Ф.Логінаў, А.Х.Шкляр і інш.), рэкі і водны баланс (А.Р.Булаўка, В.М.Шырокаў і інш.), марфалогія азёрных катлавін і гідрахімія азёр (В.П.Якушка і інш.), геаграфія і генезіс балот (А.Д.Дубах, А.П.Підоплічка, С.Г.Скарапанаў і інш.), геаграфія і генезіс глеб, меліярацыя глеб (В.С.Аношка, Я.М.Афанасьеў, М.П.Булгакаў, І.Ф.Гаркуша, У.В.Жылко, І.С.Лупіновіч, А.Р.Мядзведзеў, П.П.Рагавы, Т.А.Раманава, М.К.Чартко і інш.), геаграфія лясной і лугавой расліннасці (В.С.Гельтман, Д.С.Голад, І.Д.Юркевіч і інш.), зоагеаграфія Беларусі (М.С.Долбік), палеагеаграфія (Г.І.Гарэцкі, Н.А.Махнач і інш.), рацыянальнае прыродакарыстанне, ахова навакольнага асяроддзя (В.Н.Кісялёў, Ф.С.Марцінкевіч, А.У.Тамашэвіч і інш.), геаграфія нар. гаспадаркі (Г.І.Гарэцкі, Л.В.Казлоўская, М.Т.Раманоўскі і інш.), насельніцтва і населеныя пункты (В.А.Жучкевіч, А.А.Ракаў, С.А.Польскі і інш.). Дзейнічае Беларускае геаграфічнае таварыства.

Літ.:

Мир географии: География и географы. Природная среда. М., 1984;

Баландин Р.К., Бондарев Л.Г. Природа и цивилизация. М., 1988;

Энцыклапедыя прырода Беларусі. Т. 1—5. Мн., 1983—86.

Р.А.Жмойдзяк.

т. 5, с. 113

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАМЕ́ТРЫЯ

(ад геа... + ...метрыя),

раздзел матэматыкі, які вывучае прасторавыя дачыненні і формы цел, а таксама інш. дачыненні і формы, падобныя да прасторавых паводле сваёй структуры. Узнікла з практычных патрэб чалавека для вызначэння адлегласці, вуглоў, плошчаў, аб’ёмаў і інш. Без геаметрыі немагчыма развіццё астраноміі, геадэзіі, картаграфіі, крышталяграфіі, адноснасці тэорыі і ўсіх графічных метадаў. Геам. тэорыі выкарыстоўваюцца ў механіцы і фізіцы: магчымыя канфігурацыі (узаемнае размяшчэнне элементаў) мех. сістэмы ўтвараюць «канфігурацыйную прастору» (рух сістэмы адлюстроўваецца рухам пункта ў гэтай прасторы); сукупнасць станаў фіз. сістэмы разглядаецца як «фазавая прастора» сістэмы і інш.

Асн. паняцці геаметрыі (лінія, паверхня, пункт, цела геаметрычнае) узніклі ў выніку абстрагавання ад інш. уласцівасцей цел (напр., масы, колеру). Параўнанне цел абумовіла ўзнікненне паняццяў даўжыні, плошчы, аб’ёму, меры вугла. Самыя простыя геам. звесткі і паняцці былі вядомы ў стараж. Егіпце, Вавілоне, Кітаі, Індыі; геам. палажэнні фармуляваліся ў выглядзе правіл з элементарнымі доказамі або без доказаў. Самастойнай навукай геаметрыя стала ў Стараж. Грэцыі (5 ст. да н.э.); геаметрыя ў аб’ёме, які прыкладна адпавядае сучаснаму курсу элементарнай геаметрыі, выкладзена ў «Пачатках» Эўкліда (3 ст. да н.э.). Развіццё астраноміі і геадэзіі прывяло да стварэння плоскай (гл. Трыганаметрыя) і сферычнай трыганаметрыі (1—2 ст. да н.э.). Інтэнсіўнае развіццё геаметрыі пачынаецца з 17 ст.: Р.Дэкарт прапанаваў метад каардынат; І.Ньютан і Г.Лейбніц стварылі дыферэнцыяльнае і інтэгральнае злічэнне, што дало магчымасць вывучаць геам. аб’екты метадамі алгебры і аналізу бясконца малых (гл. Алгебраічная геаметрыя, Аналітычная геаметрыя, Дыферэнцыяльная геаметрыя); Ж.Дэзарг і Б.Паскаль заклалі асновы праектыўнай геаметрыі. У працах Г.Монжа (18 ст.) сучасны выгляд набыла нарысоўная геаметрыя. У 1826 М.А.Лабачэўскі пабудаваў геаметрыю на аснове сістэмы аксіём, якія адрозніваюцца ад эўклідавай толькі аксіёмай аб паралельных прамых (гл. Лабачэўскага геаметрыя). Стала магчымым будаванне разнастайных прастораў з рознымі геаметрыямі (гл., напр., Неэўклідавы геаметрыі), сістэматызацыя якіх магчыма з дапамогай груп тэорыі. Пасля гэтага павялічылася роля і пашырылася выкарыстанне аксіяматычнага метаду. У 1872 Ф.Клейн сфармуляваў новае тлумачэнне геаметрыі як навукі аб уласцівасцях, інварыянтных адносна зададзенай групы пераўтварэнняў. Паралельна развіваўся логікавы аналіз асноў геаметрыі, высвятляліся пытанні несупярэчлівасці, мінімальнасці і паўнаты сістэмы аксіём. Вынікі гэтых работ падвёў Д.Гільберт у кн. «Асновы геаметрыі» (1899). У працах сав. матэматыкаў П.С.Аляксандрава, Л.С.Пантрагіна, П.С.Урысона развіваліся асн. кірункі тапалогіі. Кірунак «Геаметрыя ў цэлым» заснавалі сав. матэматыкі А.Д.Аляксандраў, М.У.Яфімаў, А.Б.Пагарэлаў.

На Беларусі станаўленне геаметрыі пачалося ў 1930-я г. Атрыманы важныя вынікі ў праблеме ўкладання рыманавых прастораў у эўтслідавы і рыманавы прасторы (Ц.Л.Бурстын); метадамі вонкавых форм даследаваны лініі і паверхні Картана ў неэўклідавых прасторах (Л.К.Тутаеў); адкрыты клас аднародных прастораў і распрацавана іх тэорыя (В.І.Вядзернікаў, А.С.Фядзенка, Б.П.Камракоў).

Літ.:

Александров А.Д., Нецветаев Н.Ю. Геометрия. М., 1990;

Алгебра и аналитическая геометрия. Ч. 1. Мн., 1984;

Дифференциальная геометрия. Мн., 1982;

Феденко А.С. Пространства с симметриями. Мн., 1977.

А.А.Гусак.

т. 5, с. 121

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)