АМПЛІТУ́ДНАЯ МАДУЛЯ́ЦЫЯ,
павольная змена амплітуды эл.-магн. ваганняў у параўнанні э іх перыядам па вызначаным законе; від мадуляцыі. Выкарыстоўваецца для перадачы інфармацыі ў радыё- і аптычным дыяпазонах хваляў (напр., перадача гукавога суправаджэння, тэлевізійных адлюстраванняў). Перадавальная радыёстанцыя, якая працуе ў рэжыме амплітуднай мадуляцыі, вылучае спектр частот. У выпадку амплітуднай мадуляцыі сінусаідальным сігналам (гл. рыс.) спектр мае 3 складальныя: нясучую (ω) і 2 бакавыя частаты
. Глыбіня амплітуднай мадуляцыі характарызуе ступень змены амплітуды:
; частата мадуляцыі Ω — скорасць змены амплітуды ваганняў. Для атрымання амплітудна-мадуляванага вагання нясучая частата і сігнал, якім яна мадулюецца, падаюцца на мадулятар.
т. 1, с. 323
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БО́КУЦЬ Барыс Васілевіч
(27.10.1926, в. Сакольшчына Уздзенскага р-на Мінскай вобл. — 15.3.1993),
бел. фізік. Акад. АН Беларусі (1980, чл.-кар. 1974), д-р фіз.-матэм. н. (1973), праф. (1975). Засл. дз. нав. Беларусі (1978). Скончыў БДУ (1952). З 1955 у Ін-це фізікі АН Беларусі, У 1973—89 рэктар Гомельскага ун-та. Навук. працы па нелінейнай оптыцы і электрадынаміцы аптычнаактыўных крышталёў. Высветліў асн. аспекты нелінейнага пераўтварэння частаты ў крышталях і стварыў (разам з супрацоўнікамі) перастройвальныя крыніцы кагерэнтнага аптычнага выпрамянення. Дзярж. прэмія СССР 1984.
Тв.:
Достижения физической оптики в Белоруссии. Мн., 1979 (разам з В.В.Філіпавым);
Эффект Садовского в поглощающих гиротропных средах. Мн., 1980 (разам з Г.С.Міцюрычам, В.В.Шапялевічам).
т. 3, с. 208
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АКТА́ВА (італьян. ottava ад лац. octava восьмая) у акустыцы, пазасістэмная безразмерная адзінка частотнага інтэрвалу. Абазначаецца — акт. 1 акт. — інтэрвал паміж дзвюма частотамі, лагарыфм адносіны якіх пры аснове 2 роўны адзінцы, што адпавядае адносіне верхняй гранічнай частаты да ніжняй гранічнай частаты, роўнай 2.
У музыцы, 1) восьмая ступень дыятанічнага гукарада. Мае аднолькавую назву з зыходнай, аднародная з ёю ў гучанні, але адрозніваецца вышынёю.
2) Самы нізкі па вышыні з абертонаў, якія ўваходзяць у склад кожнага гуку; лічбы ваганняў актавы і зыходнага гуку суадносяцца як 2:1.
3) Частка муз. гукарада, якая ўключае 7 асн. ступеняў дыятанічнага гукарада ці 12 гукаў (паўтонаў) храматычнай гамы ад «до» да «сі». Усяго ў муз. гукарадзе 7 поўных і 2 няпоўныя актавы: субконтрактава (3 верхнія гукі — A2, B2, H2), контрактава, вялікая, малая, 1-, 2, 3, 4, 5-я (адзін ніжні гук — C5) актавы. Найб. поўнае ўяўленне пра падзел гукавой шкалы на актавы дае клавіятура фп. (гл. рыс.).
4) Інтэрвал, які ахоплівае 8 ступеняў дыятанічнага гукарада і складаецца з 6 цэлых тонаў.
5) Назва самага нізкага баса (актавіст) у практыцы харавых спеваў.
У паэзіі — васьмірадковая страфа з цвёрдым спалучэннем рыфмы: першыя 6 радкоў аб’яднаны дзвюма перакрыжаванымі рыфмамі, а 2 апошнія — сумежнымі (АбАбАбвв), з чаргаваннем мужчынскіх і жаночых клаўзул. Узнікла ў італьян. нар. паэзіі, росквіту дасягнула ў эпоху Адраджэння (Л.Арыёста, Т.Таса, Л.Камоэнс). Актавай напісаны «Дон Жуан» Дж.Байрана, «Домік у Каломне» А.Пушкіна. У бел. паэзіі да актавы ўпершыню звярнуліся Я.Купала («Спроба актавы») і М.Багдановіч («Актава»).
т. 1, с. 208
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГУКАМЕ́ТРЫЯ,
вымярэнне велічынь, якія характарызуюць гук, а таксама амплітудных, частотных і фазавых суадносін гукавых хваль, што характарызуюць работу электраакустычных прылад, акустычныя ўласцівасці матэрыялаў, канструкцый, памяшканняў і інш. Праводзіцца ў гукавымяральных камерах.
У глухіх камерах (бязрэхавыя, з макс. паглынаннем гуку) ствараюць і вымяраюць пастаянны гукавы ціск, вызначаюць дыяграмы накіраванасці гуку, характарыстыкі мікрафонаў, тэлефонаў, гуказдымальнікаў і інш. акустычных сістэм, выконваюць інш. акустычныя даследаванні. У гулкіх камерах (з мінім. гукапаглынаннем) вызначаюць каэф. гукапаглынання па працягласці рэверберацыі да і пасля ўнясення ў камеру шчыта з матэрыялу, які даследуецца. Амплітудныя суадносіны гукавых хваль (сілу гуку) вымяраюць прамым і эл. метадам, частотныя суадносіны — эл. метадам з дапамогай аналізатараў спектра гукавой частаты, фазавыя суадносіны — фазометрам.
т. 5, с. 524
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БІЯЛАГІ́ЧНЫЯ РЫ́ТМЫ,
біярытмы, цыклічныя ваганні інтэнсіўнасці і характару біял. працэсаў і з’яў, уласцівыя амаль усім жывым арганізмам (ад аднаклетачных да чалавека), ізаляваным органам і тканкам, асобным клеткам. Біялагічныя рытмы накіраваны на падтрымку гамеастазу і адаптацыі, адлюстроўваюць цячэнне часу ў біялагічных сістэмах. Класіфікацыя біялагічных рытмаў заснавана на паняцці цыкла (паслядоўнасці станаў са зваротам да зыходнага) і часу паміж станамі сістэмы, якія паўтараюцца (даўжыні перыяду); яна ўключае дыяпазон перыядаў ад мілісекунды да некалькіх гадоў. Адрозніваюць 5 класаў біялагічных рытмаў: рытмы высокай частаты, ад доляў секунды да 30 мін (асцыляцыі на малекулярным узроўні, рытмы скарачэння сэрца, дыханне, перыстальтыка кішэчніка); рытмы сярэдняй частаты, ад 30 мін да 28 гадз, у т. л. ультрадыянныя (да 20 гадз) і цыркадыянныя, ці калясутачныя (20—28 гадз), якія звязаны з вярчэннем Зямлі вакол восі; мезарытмы: інфрадыянныя (28 гадз — 6 дзён) і цыркасептальныя (каля 7 дзён); макрарытмы з перыядам ад 20 дзён да аднаго года; мегарытмы з перыядам у гады і дзесяткі гадоў. Біялагічныя рытмы класіфікуюць таксама па ўзроўнях арганізацыі біясістэмы: клетачныя, органавыя, арганізмавыя, папуляцыйныя. Біялагічныя рытмы раслін праяўляюцца ў сутачным руху лісця, пялёсткаў, сезонным адраўненні парасткаў, якія зімуюць. Біялагічныя рытмы жывёл выяўляюцца ў перыядычнасці рухальнай актыўнасці, тэмпературы, сакрэцыі гармонаў, праліферацыі клетак, сінтэзе РНК, утварэнні рыбасом і інш. Вызначаны рытмы адчувальнасці клетак, тканак, органаў і арганізма да дзеяння фактараў хім. і фіз. прыроды. З парушэннем часавай арганізацыі фізіял. функцый звязаны шматлікія паталагічныя працэсы. Біялагічныя рытмы вывучае біярытмалогія.
Літ.:
Биологические ритмы: Пер. с англ. Т. 1—2. М., 1984;
Хронобиология и хрономедицина. М., 1989.
А.С.Леанцюк.
т. 3, с. 173
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕНЕРА́ТАР ВЫМЯРА́ЛЬНЫ,
прылада для дыскрэтнага або неперарыўнага ўзнаўлення параметраў эл. велічыні (напружання, сілы току) у пэўным дыяпазоне. Выхадная магутнасць генератара вымяральнага да 10 Вт. Прызначаны для выпрабаванняў і настройвання радыётэхн. апаратаў, выліч. тэхнікі, прылад аўтаматыкі і інш.
Паводле формы сігналаў адрозніваюць генератар вымяральны гарманічных эл. ваганняў, сігналаў спец. формы (трохвугольнай, пілападобнай, прамавугольнай і інш.), свіп-генератары, шумавых сігналаў, выпадковых сігналаў з пэўнымі імавернаснымі характарыстыкамі, паводле частотнага дыяпазону — інфранізкачастотныя (умоўна ад 0 да 20 Гц), нізкачастотныя (ад 20 Гц да 200 кГц) высокачастотныя (30 кГц — 30 МГц), звышвысокачастотныя (30 МГц — 10 ГГц з кааксіяльным выхадам; 10 — 80 ГГц з хваляводным выхадам). Асн. патрабаванні: стабільнасць частаты, амплітуды і формы выхадных сігналаў ва ўсім дыяпазоне частот, дасканалае экранаванне для выключэння лішкавага ўздзеяння на апарат, які выпрабоўваецца.
т. 5, с. 155
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГРАВІМЕ́ТР
(ад лац. gravis цяжкі + ...метр),
прылада для вымярэння сілы цяжару і адпаведнага паскарэння свабоднага падзення. Адрозніваюць гравіметры статычныя і дынамічныя, стацыянарныя і перасоўныя. Спосабы вымярэнняў бываюць абсалютныя і адносныя (вымяраецца змяненне паскарэння свабоднага падзення g у дадзеным пункце адносна пэўнага зыходнага пункта; гл. Гравіметрычная здымка). Прылады, устаноўленыя на суднах і самалётах, улічваюць таксама ўплыў сіл інерцыі. Адносная хібнасць вызначэння g да 10-7 — 10-9.
Статычныя гравіметры засн. на прынцыпе работы спружынных вагаў: змены g ураўнаважваюцца пругкай сілай (ці пругкім момантам) адчувальнага элемента (выкарыстоўваюцца для адносных вымярэнняў). Да дынамічных гравіметраў адносяць струнныя (выкарыстоўваюць для адносных вымярэнняў па зменах частаты ваганняў нагружанай струны) і балістычныя (выкарыстоўваюць для абсалютных вымярэнняў часу праходжання пры свабодным падзенні пробным целам зададзенай адлегласці).
Г.І.Каратаеў.
т. 5, с. 381
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕРЦ
(Hertz) Генрых Рудольф (22.2.1857, г. Гамбург, Германія — 1.1.1894),
нямецкі фізік, адзін з заснавальнікаў электрадынамікі. Скончыў Берлінскі ун-т (1880) і быў асістэнтам у Г.Гельмгольца. З 1885 праф. Вышэйшай тэхн. школы ў Карлсруэ, з 1889 Бонскага і Берлінскага ун-таў. Навук. працы па механіцы і электрадынаміцы. Прапанаваў поўную тэорыю ўдару пругкіх шароў (1882), даў строга навук. азначэнне паняцця цвёрдасці цел. Сканструяваў эл.-магн. генератар (вібратар Герца) і рэзанатар, з дапамогай якіх эксперыментальна даказаў існаванне эл.-магн. хваль (1886—89). Эксперыментальна пацвердзіў тоеснасць уласцівасцей эл.-магн. і светлавых хваль, адкрыў знешні фотаэфект (1887). Яго імем названа адзінка частаты — герц.
Літ.:
Григорьян А.Т., Вяльцев А.Н. Генрих Герц. М., 1968;
Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX в.). М., 1989. С. 524—537.
т. 5, с. 200
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЯЛІ́КІХ ЛІ́КАЎ ЗАКО́Н,
агульны прынцып, паводле якога сукупнае дзеянне вял. ліку выпадковых фактараў пры некаторых вельмі агульных умовах прыводзіць да выніку, які амаль не залежыць ад выпадку.
На пач. 18 ст. Я.Бернулі ўпершыню дакладна даказаў тэарэму пра імкненне частаты выпадковай падзеі да яе імавернасці пры вял. колькасці выпрабаванняў. Гэтая тэарэма дае тэарэт. аснову для набліжанага вылічэння невядомай імавернасці падзеі па яе частаце. С.Пуасон у 1837 пашырыў тэарэму Бернулі на больш агульныя ўмовы і ўвёў тэрмін «Вялікіх лікаў закон». Значнае абагульненне тэарэмы Бернулі зрабіў П.Л.Чабышоў (1866), вынікам чаго з’яўляецца правіла сярэдняга арыфметычнага, якое выкарыстоўваецца ў практыцы вымярэнняў: калі x1, x2, x3, ..., xn — значэнні велічыні, што вымяраецца, то яе сапраўднае значэнне супадае з сярэднім значэннем
Вялікіх лікаў законам карыстаюцца ў тэхніцы, фізіцы, статыстыцы, эканоміцы і інш. галінах навукі і тэхнікі.
А.А.Гусак.
т. 4, с. 387
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЕАТЭХНАЛО́ГІЯ
(ад геа... + тэхналогія),
хімічныя, фіз.-хім., біяхім. і мікрабіял. метады здабычы карысных выкапняў на месцы іх залягання. Звязаны з выкарыстаннем буравых свідравін. Ажыццяўляюцца пад зямлёй без прысутнасці людзей.
Метадамі геатэхналогіі ператвараюць вугаль у гаручыя газы няпоўным спальваннем яго пад зямлёй (гл. Падземная газіфікацыя вугалю); здабываюць цвёрдыя карысныя выкапні іх гідрамех. разбурэннем і перамяшчэннем на паверхню здробненых часціц разам з вадой, што запампоўваецца ў радовішча; атрымліваюць серу расплаўленнем яе гарачай вадой або газіфікацыяй токамі высокай частаты; ажыццяўляюць тэрмічную здабычу нафты (нафтаносныя пласты награюць эл. токам, парай, гарачай вадой або спальваннем часткі нафты); здабываюць кухонную соль (па адной трубе ў свідравіну запампоўваюць ваду, па другой адпампоўваюць расол). Асобны від геатэхналогіі — бактэрыяльнае вышчалочванне, пры якім з дапамогай мікраарганізмаў вылучаюць з шматкампанентных злучэнняў пэўныя хім. элементы (пераважна медзі, урану). Метады геатэхналогіі выкарыстоўваюцца на радовішчах з невялікай колькасцю карысных выкапняў і рассеянымі элементамі.
т. 5, с. 124
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)