ВЯРЧЭ́ННЕ ПЛО́СКАСЦІ ПАЛЯРЫЗА́ЦЫІ святла, паварот плоскасці палярызацыі лінейна палярызаванага святла пры праходжанні яго праз некаторыя рэчывы; від падвойнага праменепраламлення. Адбываецца ў аптычна актыўных ізатопах асяроддзя і ў актыўных крышталях (гл. Аптычная актыўнасць), а таксама ў неактыўных рэчывах пры дзеянні на іх знешняга магнітнага поля (гл. Фарадэя эфект).

Пры вярчэнні плоскасці палярызацыі ў асяроддзі ўзнікаюць 2 эл.-магн. хвалі, палярызаваныя па крузе ў процілеглых напрамках вярчэння, з аднолькавымі амплітудамі і рознымі скарасцямі. У выніку гэтага плоскасць палярызацыі сумарнай хвалі паступова паварочваецца. Вугал павароту залежыць ад таўшчыні, канцэнтрацыі, т-ры рэчыва і даўж. хвалі святла. Вярчэнне плоскасці палярызацыі выкарыстоўваецца для даследавання будовы рэчыва, пры вызначэнні канцэнтрацыі аптычна-актыўных рэчываў, а таксама ў некат. аптычных прыладах (аптычныя мадулятары, квантавыя гіраскопы і інш.). Гл. таксама Палярызацыя святла.

В.В.Валяўка.

т. 4, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЮ́ЙГЕНСА—ФРЭНЕ́ЛЯ ПРЫ́НЦЫП,

асноўны прынцып хвалевай оптыкі, які дае магчымасць вызначаць амплітуду (інтэнсіўнасць) хвалі ў кожным пункце, калі вядомыя яе амплітуда і фаза на якой-н. адвольнай паверхні. Першапачаткова сфармуляваны К.Гюйгенсам (1690), развіты з улікам інтэрферэнцыі А.Ж.Фрэнелем (1818), строгую матэм. фармулёўку Гюйгенса—Фрэнеля прынцыпу даў Г.Р.Кірхгоф (1882).

Паводле Гюйгенса—Фрэнеля прынцыпу кожны пункт хвалевай паверхні (фронту хвалі), якой у дадзены момант дасягнула светлавая хваля, з’яўляецца цэнтрам другасных (фіктыўных) кагерэнтных хваль, агінальная якіх у кожны наступны момант часу вызначае новую хвалевую паверхню. Інтэнсіўнасць святла ў пункце назірання вызначаецца вынікам інтэрферэнцыі другасных хваль. Пры гэтым амплітуда другасных хваль залежыць ад вугла паміж нармаллю да хвалевай паверхні ў цэнтры другаснай хвалі і напрамкам на пункт назірання. Гюйгенса—Фрэнеля прынцып выкарыстоўваецца пры рашэнні дыфракцыйных задач. Гл. таксама Дыфракцыя святла, Інтэрферэнцыя святла.

А.І.Болсун.

т. 5, с. 554

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРУПАВА́Я СКО́РАСЦЬ хваль, скорасць руху групы або цуга хваль, якія ўтвараюць у кожны момант часу лакалізаваны ў прасторы хвалевы пакет. Прыбліжана характарызуе распаўсюджанне негарманічных хваль. Пры адсутнасці паглынання групавая скорасць роўная скорасці пераносу энергіі хвалі (скорасці перадачы сігналу). Групавая скорасць u звязана з фазавай скорасцю v формулай Рэлея: u = v λ dv dλ , дзе λ — даўжыня хвалі; u = v, калі адсутнічае дысперсія хваль ( dv dλ = 0 ) . Групавая скорасць выкарыстоўваюць пры вымярэнні далёкасці ў гідра- і радыёлакацыі, пры зандзіраванні атмасферы, у сістэмах кіравання касм. аб’ектамі і інш.

т. 5, с. 466

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯГУ́ЧАЯ ХВА́ЛЯ,

хваля, што пераносіць энергію ў напрамку распаўсюджвання ад крыніцы да спажыўца. Распаўсюджваецца ў свабоднай прасторы або ўздоўж якіх-н. ліній, напр., пругкія бягучыя хвалі — уздоўж стрыжня, струны, слупа вадкасці, эл.-магн. — уздоўж кабелю, хвалявода.

т. 3, с. 392

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАВІТАЦЫ́ЙНАЕ ЗРУШЭ́ННЕ,

змяненне частаты (ці даўжыні хвалі) эл.-магн. выпрамянення пры яго распаўсюджванні ў гравітацыйным полі, абумоўленае гравітацыйным запавольваннем часу. Прадказана А.Эйнштэйнам у 1907. Адзін з эксперыментальна пацверджаных эфектаў агульнай адноснасці тэорыі. Гл. таксама Чырвонае зрушэнне.

т. 5, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕНЕРА́ТАРНАЯ ЛЯ́МПА,

электронная лямпа для пераўтварэння энергіі пастаяннага (радзей пераменнага) току ў энергію эл. ваганняў.

Генератарныя лямпы адрозніваюць паводле дыяпазону частот, колькасці электродаў (трыёд, тэтрод, пентод і інш.), магутнасці, што рассейваецца анодам (малой магутнасці — да 50 Вт, сярэдняй — да 5 кВт, вялікай — больш за 5 кВт), роду работы (неперарыўнага дзеяння і імпульсныя), канструкцыі балона (шкляныя, металашкляныя, металакерамічныя) і інш.; генератарная лямпа для дэцыметровага і больш высокачастотных дыяпазонаў хваль маюць уласную рэзанансную вагальную сістэму (клістрон, лямпа адваротнай хвалі, лямпа бягучай хвалі, магнетрон і інш.). Выкарыстоўваюцца ў радыёперадатчыках рознага прызначэння, вымяральнай тэхніцы, прамысл. устаноўках індукцыйнага нагрэву і інш.

т. 5, с. 155

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАРАБА́ННАЯ ПЕРАПО́НКА,

тонкая, эластычная мембрана ў вуху наземных пазваночных жывёл і чалавека. Аддзяляе вонкавы слыхавы праход ад барабаннай поласці. Гал. функцыя — перадача гуку і яго ўзмацненне. Гукавыя хвалі, дасягаючы барабаннай перапонкі, надаюць ёй ваганне, якое праз слыхавыя костачкі перадаецца ўнутранаму вуху.

т. 2, с. 285

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУК,

ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.

Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.

П.С. Габец, А.Р.Хаткевіч.

т. 5, с. 522

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНЫ РЭЗАНА́ТАР,

сістэма люстраных адбівальных паверхняў, у якой узбуджаюцца і падтрымліваюцца стаячыя ці бягучыя электрамагнітныя хвалі аптычнага дыяпазону. У адрозненне ад аб’ёмнага рэзанатара аптычны з’яўляецца адкрытым (няма бакавых сценак). Аптычны рэзанатар — адзін з важнейшых элементаў лазера. Асн. характарыстыка аптычнага рэзанатара — дыхтоўнасць (вызначае страты светлавой энергіі і характарызуе рэзанансныя ўласцівасці).

Прасцейшы аптычны рэзанатар — інтэрферометр Фабры—Перо, які складаецца з 2 плоскіх строга паралельных люстэркаў, што знаходзяцца на адлегласці L, значна большай за даўжыню хвалі λ. Калі паміж люстэркамі ўздоўж восі рэзанатара распаўсюджваецца плоская светлавая хваля, то ў выніку адбіцця ад люстэркаў і інтэрферэнцыі адбітых хваляў утвараецца стаячая хваля. Умова рэзанансу: L = q∙λ/2. дзе q — падоўжны індэкс ваганняў (колькасць паўхваляў, што ўкладаюцца ўздоўж восі аптычнага рэзанатара). У лазернай тэхніцы выкарыстоўваюцца канфакальныя рэзанатары, утвораныя сферычнымі люстэркамі, якія разнесены на адлегласць, роўную радыусу іх крывізны, а таксама кальцавыя аптычныя рэзанатары, што складаюцца з 3 і болей плоскіх або сферычных люстэркаў. У аптычным рэзанатары са сферычнымі люстэркамі ўзбуджаюцца таксама незалежныя бягучыя насустрач адна адной хвалі.

Літ.:

Ананьев Ю.А. Оптические резонаторы и проблема расходимости лазерного излучения. М., 1979.

В.В.Валяўка.

т. 1, с. 439

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПЕРГУ́К,

пругкія хвалі з частатой 10​9—10​13 Гц. Па фізічнай прыродзе не адрозніваецца ад ультрагуку (2·10​4—10​9 Гц). Існуе гіпергук прыродны (цеплавыя ваганні крышталічнай рашоткі) і штучны (генерыруецца пры дапамозе спец. выпрамяняльнікаў; гл. П’езаэлектрычнасць, Магнітастрыкцыя).

Пругкія хвалі распаўсюджваюцца ў асяроддзі, калі іх даўжыні большыя за даўжыню свабоднага прабегу малекул у газах ці міжатамных адлегласцей у вадкіх і цвёрдых целах. Таму ў газах, у т. л. ў паветры, пры нармальных умовах гіпергук не распаўсюджваецца, у вадкасцях хутка затухае; параўнальна добрыя праваднікі гіпергуку — монакрышталі пры нізкіх т-рах. Гіпергук выкарыстоўваюць для даследавання стану рэчыва, асабліва ў фізіцы цвёрдага цела, для стварэння акустычных ліній затрымкі ў ЗВЧ дыяпазоне і інш. прылад акустаэлектронікі і акустаоптыкі.

т. 5, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)