ГУ́БКІН Сяргей Іванавіч

(27.8.1898, С.-Пецярбург — 8.9.1955),

бел. вучоны ў галіне металургіі. Акад. АН БССР (1947). Д-р хім. н. (1936), праф. (1945). Засл. дз. нав. і тэхн. Беларусі (1954). Сын І.М.Губкіна. Скончыў Маскоўскую горную акадэмію (1928). З 1944 нам. дырэктара Ін-та металургіі АН СССР, у 1948—55 дырэктар Фіз.-тэхн. ін-та АН БССР, адначасова заг. кафедры БПІ. Працы па тэорыі пластычнай дэфармацыі і апрацоўцы металаў ціскам. Распрацаваў матэм. метады вывучэння працэсаў цячэння металу пры пракатцы, коўцы, штампоўцы. Стварыў навукова абгрунтаваную класіфікацыю відаў апрацоўкі металаў ціскам.

Тв.:

Теория обработки металлов давлением. М., 1947;

Фотопластичность. Мн., 1957 (разам з С.І.Дабравольскім, Б.Б.Бойкам);

Пластическая деформация металлов. Т. 1—3. М., 1961.

т. 5, с. 517

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗАРАЎ Пётр Пятровіч

(13.4.1878, Масква — 24.4.1942),

расійскі фізік і бія-геафізік. Акад. АН СССР (1917). Скончыў Маскоўскі ун-т (1903). У 1912—25 праф. Маскоўскага вышэйшага тэхн. вучылішча. З 1920 дырэктар арганізаванага ім Дзярж. біяфіз. ін-та. З 1931 ва Усесаюзным ін-це эксперым. медыцыны, з 1938 — дырэктар біяфіз. лабараторыі АН СССР. Заснавальнік і рэдактар (1918—24) час. «Успехи физических наук». Навук. працы па фізіцы, фіз. хіміі, біягеафізіцы, гісторыі дакладных навук. Стварыў іонную тэорыю ўзбуджэння, даследаваў працэсы фізіял. адаптацыі, распрацаваў методыку прымянення законаў тэрмадынамікі да біял. працэсаў. Кіраваў даследаваннямі Курскай магнітнай анамаліі.

Тв.:

Соч. Т. 1—3. М.; Л., 1950—57.

Літ.:

Шулейкин В.В. П.П.Лазарев // Основатели советской физики. М., 1970.

А.У.Астапенка.

т. 9, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІЯНАЛО́ГІЯ

(ад акіян + ...логія),

акіянаграфія, сукупнасць навуковых дысцыплін аб фізічных, хімічных, геалагічных і біялагічных працэсах у Сусветным акіяне. Гал. задачы акіяналогіі: высвятленне агульных заканамернасцяў прыроды акіяна, вывучэнне трансфармацыі і абмену рэчываў і энергіі ў акіянскіх водах і ахова іх ад забруджвання, выкарыстанне харчовых, хім. і энергет. рэсурсаў акіяна, распрацоўка доўгатэрміновых прагнозаў надвор’я на Зямлі, папярэджанне катастрафічных з’яў, звязаных з акіянамі, забеспячэнне эфектыўнасці і бяспекі надводнага і падводнага мараплавання.

Першымі даследчыкамі акіянаў былі стараж. мараплаўцы. Стараж.-грэч. вучоныя Герадот, Арыстоцель, Гіпарх і інш. выказвалі меркаванні аб адзінстве Атлантычнага і Індыйскага акіянаў, кругавароце вады ў прыродзе, прылівах і інш. з’явах. Перыяд інтэнсіўнага вывучэння звязаны з эпохай Вял. геагр. адкрыццяў (сярэдзіна 15—18 ст.; Х.Калумб, Ф.Магелан, Дж.Кук і інш.). Важныя вынікі атрыманы рус. Антарктычнай экспедыцыяй Ф.Белінсгаўзена і М.Лазарава на суднах «Усход» і «Мірны» (1820) і першай комплекснай акіянаграфічнай экспедыцыяй на карвеце «Чэленджэр» (1872—76; Дж.Мерэй склаў першую карту акіянскіх глеяў). Даследаванні розных ч. Сусветнага ак. праводзілі С.Макараў на «Віцязі» (1886—89) і ледаколе «Ярмак» (1899, 1901), Ф.Нансен на «Фраме» (1891—96), ням. экспедыцыя на «Метэоры» (1925—27), Антарктычная англ. экспедыцыя на «Дысковеры 11» (1929—39) і інш. Пасля 2-й сусв. вайны акіяналогія становіцца адной з важных навук у сувязі з пачаткам выкарыстання рэсурсаў Сусветнага акіяна. Даследаванні акваторыі акіяна, складанне схемы рэльефу дна праводзяць н.-д. экспедыцыі розных краін (амер. з 1956 «Віма», з 1957 «Атлантык»; рус. з 1957 «Віцязь», з 1967 «Акадэмік Кніповіч», з 1974 «Дзмітрый Мендзялееў» і інш.). Грунтуецца акіяналогія на фактычных даных вымярэнняў, атрыманых з суднаў надвор’я, дрэйфуючых аўтам. гідраметэаралагічных станцый і акіянаграфічных платформаў, штучных спадарожнікаў Зямлі і падводных лабараторый. У сучаснай акіяналогіі пашыраны матэм мадэліраванне фіз., хім. і біял. працэсаў, даследаванне зменлівасці іх на падставе тэорыі імавернасці і матэм. статыстыкі.

Фізіка акіяна даследуе фіз. працэсы ў акіянскіх і марскіх водах, заканамернасці ўзаемадзеяння акіяна і атмасферы; хімія акіяна вывучае хім. ўласцівасці, састаў, фіз. і хім. працэсы водаў; геалогія акіяна — паходжанне ложа акіяна, яго эвалюцыю і будову, рэльеф дна, заканамернасці ўтварэння карысных выкапняў; біялогія акіяна — жывёльны і раслінны свет акіянаў і мораў, фарміраванне біял. прадукцыйнасці акіянскіх і марскіх водаў. Вылучаюць акіяналогію рэгіянальную, якая займаецца фізіка-геагр. і эканоміка-геагр. даследаваннем акіянаў і мораў; прамысловую, звязаную з акіяналагічным забеспячэннем марскіх промыслаў; спадарожнікавую (касмічную), якая атрымлівае вымярэнні разнастайных параметраў акіяна са штучных спадарожнікаў. Акіянскія даследаванні каардынуюцца Навук. к-там па акіянскіх даследаваннях, Міждзярж. акіянаграфічнай камісіяй пры ЮНЕСКА, нац. гідраметэацэнтрамі і н.-д. Ін-тамі.

А.М.Вітчанка.

т. 1, с. 194

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАЛАГРА́ФІЯ

(ад грэч. holos увесь, поўны + ...графія),

метад атрымання поўнага аб’ёмнага відарыса аб’екта, заснаваны на інтэрферэнцыі і дыфракцыі кагерэнтных хваль; галіна фізікі, што вывучае заканамернасці запісу, узнаўлення і пераўтварэння хвалевых палёў рознай прыроды (аптычных, акустычных і інш.). Галаграфію вынайшаў (1948) і атрымаў першыя галаграмы (ГЛ) найпрасцейшых аб’ектаў Д.Габар. У 1962—63 амер. фізікі Э.Лэйтс і Ю.Упатніекс выкарысталі для атрымання ГЛ лазер, а сав. фізік Ю.М.Дзенісюк (1962) прапанаваў метад запісу аб’ёмных ГЛ. У 1960-я г. створаны тэарэт. і эксперым. асновы галаграфіі.

Аб’ёмны відарыс аб’екта фіксуецца на ГЛ у выглядзе інтэрферэнцыйнай карціны, створанай прадметнай хваляй (ПХ), адбітай ад аб’екта, і кагерэнтнай з ёй апорнай хваляй (АХ). У адрозненне ад фатаграфіі, дзе зафіксаваны відарыс аптычны, ГЛ дае прасторавае размеркаванне амплітуды і фазы ПХ. Паколькі ПХ не плоская, ГЛ мае структуру нерэгулярнай дыфракцыйнай рашоткі. Інфармацыя аб размеркаванні амплітуды ПХ запісваецца ў выглядзе кантрасту інтэрферэнцыйнай карціны, а фазы — у выглядзе формы і перыяду інтэрферэнцыйных палос (гл. Інтэрферэнцыя святла). Пры асвятленні галаграмы АХ у выніку дыфракцыі святла ўзнаўляецца амплітудна-фазавае размеркаванне поля ПХ. ГЛ пераўтварае частку АХ у копію ПХ, пры ўспрыманні якой вокам ствараецца ўражанне непасрэднага назірання аб’екта. Галаграфія мае шэраг спецыфічных уласцівасцей, адрозных ад фатаграфіі: ГЛ узнаўляе аб’ёмны (монахраматычны або каляровы) відарыс аб’екта, кожны ўчастак ГЛ дазваляе ўзнавіць увесь відарыс аб’екта, аб’ёмныя ГЛ Дзенісюка ўзнаўляюцца пры дапамозе звычайных крыніц святла (сонечнае асвятленне, лямпа напальвання), галаграфічны запіс мае вял. надзейнасць і інфарм. ёмістасць, што вызначае шырокі спектр практычнага выкарыстання галаграфіі: для атрымання аб’ёмных відарысаў твораў мастацтва, стварэння галаграфічнага кіно, для неразбуральнага кантролю формы складаных аб’ектаў, вывучэння неаднароднасцей матэрыялаў, захоўвання і апрацоўкі інфармацыі, для візуалізацыі акустычных і эл.-магн. палёў і інш.

На Беларусі даследаванні па галаграфіі пачаліся ў 1968 у Ін-це фізікі АН і праводзяцца ў ін-тах фіз. і фіз.-тэхн. профілю АН, БДУ і інш. Распрацаваны фіз. прынцыпы дынамічнай галаграфіі, развіты метады апрацоўкі інфармацыі і пераўтварэння прасторавай структуры лазерных пучкоў (П.А.Апанасевіч, А.А.Афанасьеў, Я.В.Івакін, А.С.Рубанаў, Б.І.Сцяпанаў і інш.). Створаны галаграфічныя метады для даследавання дэфармацый і вібрацый аб’ектаў, рэльефу паверхні, уласцівасцей плазмы, сістэмы аптычнай памяці (У.А.Піліповіч, А.А.Кавалёў, Л.В.Танін і інш.), развіты метады радыё- і акустычнай галаграфіі (П.Дз.Кухарчык, А.С.Ключнікаў, М.А.Вількоцкі).

Літ.:

Кольер Р., Беркхарт К., Лин Л. Оптическая голография: Пер. с англ. М., 1973;

Островский Ю.И. Голография и ее применение. Л., 1973;

Денисюк Ю.Н. Изобразительная голография // Наука и человечество, 1982. М., 1982;

Рубанов А.С. Некоторые вопросы динамической голографии // Проблемы современной оптики и спектроскопии. Мн., 1980.

А.С.Рубанаў.

т. 4, с. 446

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНАЯ ТЭ́ХНІКА,

галіна навукі і тэхнікі, звязаная з вывучэннем, вырабам і выкарыстаннем сродкаў вымярэнняў. Грунтуецца на навук. дысцыплінах, якія вывучаюць метады і сродкі атрымання колькаснай інфармацыі аб велічынях, што характарызуюць аб’екты і вытв. працэсы. Уключае вымяральныя прылады, інструменты, машыны і ўстаноўкі, прызначаныя для рэгістрацыі вынікаў вымярэння. Звязана з вылічальнай тэхнікай, кібернетыкай тэхнічнай, тэлемеханікай, электронікай, аўтаматыкай і інш.

Вымяральная тэхніка ўзнікла ў глыбокай старажытнасці і была звязана з вымярэннем мас і аб’ёмаў, адлегласцей і плошчаў, адрэзкаў часу, вуглоў і г.д. Да 16—18 ст. адносіцца ўдасканаленне гадзіннікаў і вагаў, вынаходства мікраскопа, барометра, тэрмометра. У канцы 18 — 1-й пал. 19 ст. з пашырэннем паравых рухавікоў і развіццём машынабудавання развіваецца прамысл. вымяральная тэхніка: удасканальваюцца прылады для вызначэння памераў, з’яўляюцца вымяральныя машыны, уводзяцца калібры, розныя меры фіз. велічынь (у т. л. эталоны) і г.д. У 19 ст. створаны асновы тэорыі вымяральнай тэхнікі і метралогіі, пашырылася метрычная сістэма мер, з’явіліся электравымяральныя прылады і цеплатэхнічныя прылады. У 20 ст. пачынаюць выкарыстоўвацца эл. і электронныя сродкі для вымярэння мех., цеплавых, аптычных і інш. велічынь, для хім. аналізу і геолагаразведкі, развіваюцца радыёвымярэнні і спектраметрыя, узнікае прыладабуд. прам-сць. Гал. кірункі развіцця сучаснай вымяральнай тэхнікі: лінейныя і вуглавыя вымярэнні; мех., аптычныя, акустычныя, цеплафіз., фіз.-хім. вымярэнні; эл., магн. і радыёвымярэнні; вымярэнні частаты і часу, выпрамяненняў (гл., напр., Арэометр, Асцылограф, Вакуумметр, Вісказіметр, Вымяральны пераўтваральнік, Газааналізатар, Геадэзічныя прылады і інструменты, Дазіметрычныя прылады, Інтэрферометр, Каларыметр, Люксметр, Манометр, Пнеўматычны пераўтваральнік, Радыёвымяральныя прылады, Спектрометр, Частатамер).

Шырока выкарыстоўваюцца (пераважна ў машынабудаванні) вымяральныя інструменты: універсальныя (для вымярэння дыяпазонаў памераў) і бясшкальныя (для вымярэння аднаго пэўнага памеру). Універсальныя падзяляюцца на штрыхавыя (штанген-інструменты, вугламеры, лінейкі, вугольнікі, кронцыркулі), мікраметрычныя (глыбінямеры, мікрометры, нутрамеры), механічныя з рознымі тыпамі мех. перадач (індыкатары гадзіннікавага тыпу, мініметры, мікатары), оптыка-механічныя (праектары, вымяральныя мікраскопы) і інш. Многія прылады далучаюць розныя канструкцыйныя асаблівасці, напр. аптыметры (рычажна-аптычная сістэма). Бясшкальныя інструменты — сродкі допускавага кантролю; гэта калібры (кольцы, шаблоны, коркі, скобы) і канцавыя меры (стальныя пліткі пэўнай таўшчыні ў наборах). Адным з гал. кірункаў далейшага развіцця вымяральнай тэхнікі з’яўляецца распрацоўка інфарм.-вымяральных сістэм. Удасканальваюцца сродкі дылатаметрыі, дазіметрыі, мас-спектраметрыі, рэфрактаметрыі, тэлеметрыі. Тэарэт. і навук.-практычную аснову ўдасканалення вымяральнай тэхнікі як аднаго з кірункаў прыладабудавання складаюць дасягненні і распрацоўкі ў галіне фіз тэхн. навук. На Беларусі сродкі вымяральнай тэхнікі выпускаюць Гомельскі завод вымяральных прылад, Віцебскае вытворчае аб’яднанне «Электравымяральнік» і інш.

А.Р.Архіпенка, У.М.Сацута.

т. 4, с. 314

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЧЫШЧА́ЛЬНЫЯ ЗБУДАВА́ННІ,

комплекс інж. збудаванняў для ачысткі сцёкавых водаў і апрацоўкі асадкаў. Падзяляюцца на збудаванні механічнай, біялагічнай і фізіка-хімічнай ачысткі. Выбар схемы ачысткі залежыць ад складу і колькасці сцёкавых водаў, характарыстыкі вадаёма, куды яны адводзяцца, ці тэхнал. патрабаванняў да вады ў выпадку іх паўторнага выкарыстання.

Да збудаванняў мех. ачысткі адносяцца: прыстасаванні для працэджвання (рашоткі, драбілкі, сіты) і сепарацыі (пескаўлоўнікі, тлушчаўлоўнікі, маслааддзяляльнікі, нафтапасткі, адстойнікі, гідрацыклоны, цэнтрыфугі). Збудаванні біял. ачысткі ў прыродных умовах — палі фільтрацыі і арашэння, біял. сажалкі (бываюць з сістэмамі прымусовай аэрацыі). Біял. ачыстка ў штучных умовах ажыццяўляецца на біяфільтрах і ў аэратэнках. Збудаванні фіз.-хім. ачысткі: флататары, сарбцыйныя, экстракцыйныя і інш. калоны, нейтралізатары, іонаабменныя фільтры, гіперфільтрацыйныя ўстаноўкі, збудаванні эл.-хім. ачысткі і інш. Вузел апрацоўкі асадку ўключае збудаванні па стабілізацыі, кандыцыянаванні, абязводжванні асадку. На невялікіх ачышчальных збудаваннях асадак затрымліваюць і зброджваюць у септыках і адстойніках. На буйных станцыях стабілізацыя асадку робіцца ў анаэробных (метатэнкі) ці аэробных стабілізатарах. Пры выкарыстанні метатэнкаў для утылізацыі газу, што выдзяляецца, прадугледжваюцца газгольдэры. Для абязводжвання стабілізаваных асадкаў у прыродных умовах служаць глеістыя пляцоўкі. Механічнае абязводжванне робяць вакуум-фільтрамі, фільтрпрэсамі, цэнтрыфугамі. Абеззаражваюць ачышчаную ваду ў кантактных рэзервуарах з дапамогай хлору ці азону. Устаноўкі па абеззаражванні бактэрыцыднымі прамянямі ўключаюць выпрамяняльную лямпу, уманціраваную ў трубаправод, які транспартуе ваду, што апрацоўваецца. Лакальныя ачышчальныя збудаванні прадпрыемстваў камплектуюцца вузламі мех. і фіз.-хім. ачысткі. Гарадскія ачышчальныя збудаванні, якія прымаюць сумесь бытавых і вытв. сцёкаў, уключаюць мех. і біял. ачыстку, абеззаражванне ачышчаных сцёкавых водаў і апрацоўку асадку. Збудаванні ачысткі атм. сцёку складаюцца з адстойнікаў і фільтраў (біял. сажалак). Да ачышчальных збудаванняў адносяцца таксама збудаванні для ачысткі паветра.

В.Г.Аўсянікаў.

т. 2, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВА́ДКІЯ КРЫШТАЛІ́,

стан рэчыва, прамежкавы паміж цвёрдым крышталічным і ізатропным вадкім. Характарызуецца цякучасцю і поўнай ці частковай адсутнасцю трансляцыйнага парадку ў структуры пры захаванні арыентацыйнага парадку ў размяшчэнні малекул (гл. Далёкі і блізкі парадак). Вадкія крышталі маюць пэўны тэмпературны інтэрвал існавання.

Пераходы цвёрдага крышталічнага рэчыва ў вадкі крышталь і далей у ізатропную вадкасць і адваротныя працэсы з’яўляюцца фазавымі пераходамі. Паводле спосабу атрымання вадкія крышталі падзяляюцца на ліятропныя (утвараюцца пры растварэнні шэрагу злучэнняў у ізатропных вадкасцях; напр., сістэма мыла — вада) і тэрматропныя (узнікаюць пры плаўленні некаторых рэчываў). Па арганізацыі малекулярнай структуры адрозніваюць вадкія крышталі нематычныя (з вылучаным напрамкам арыентацыі малекул — дырэктарам і адсутнасцю трансляцыйнага парадку), смектычныя (з пэўнай ступенню трансляцыйнага парадку — слаістасцю) і халестэрычныя (нематычныя, у якіх дырэктары сумежных слаёў утвараюць паміж сабою вугал, з-за чаго ўзнікае вінтавая структура). Узаемная арыентаванасць малекул абумоўлівае анізатрапію фіз. уласцівасцей вадкіх крышталёў: пругкасці, электраправоднасці, магн. успрымальнасці, дыэлектрычнай пранікальнасці і інш., што выкарыстоўваецца для выяўлення і рэгістрацыі фіз. уздзеянняў (эл. і магн. палёў, змены т-ры і інш.). Многія арган. рэчывы чалавечага арганізма (эфіры халестэрыну, міэлін, біямембраны) знаходзяцца ў стане вадкіх крышталёў.

Вадкія крышталі выкарыстоўваюцца ў інфарм. дысплеях (калькулятары, электронныя гадзіннікі, вымяральныя прылады і інш.), пераўтваральніках відарысаў, прыладах цеплабачання, мед. тэрмаіндыкатарах і інш. На Беларусі даследаванні вадкіх крышталёў праводзяцца ў БДУ, Мінскім і Віцебскім мед. ін-тах, Бел. ун-це інфарматыкі і радыёэлектронікі, навук.-вытв. аб’яднанні «Інтэграл» і інш.

Літ.:

Чандрасекар С. Жидкие кристаллы: Пер. с англ. М., 1980;

Текстурообразование и структурная упорядоченность в жидких кристаллах. Мн., 1987.

В.І.Навуменка.

т. 3, с. 439

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГО́РНЫЯ ПАРО́ДЫ,

шчыльныя або рыхлыя прыродныя мінеральныя агрэгаты больш ці менш пастаяннага мінералагічнага і хім. саставу, якія ўтвараюць самаст. геал. целы, што складаюць зямную кару, а таксама верхнія абалонкі планет зямной групы, Месяца, астэроідаў. Складаюцца з мех. злучэння розных паводле саставу мінералаў, у т. л. вадкіх. У прыродзе вядома больш за 3 тыс. мінералаў, з іх 40—50 пародаўтваральных. Тэрмін «горныя пароды» ўпершыню ў сучасным сэнсе выкарыстаў рус. мінералог і хімік В.М.Севяргін (1798).

Утвараюцца ў выніку геал. працэсаў у пэўных фіз.-хім. умовах унутры зямной кары ці на яе паверхні. Гэтыя працэсы вызначаюць састаў, будову, структуру, тэкстуру і ўмовы залягання горных парод. Паводле паходжання вылучаюць асадкавыя горныя пароды, магматычныя горныя пароды, метамарфічныя горныя пароды і метасаматычныя горныя пароды. Асадкавыя складаюць каля 10% аб’ёму зямной кары і каля 75% пл. зямной паверхні, на магматычныя, метамарфічныя і метасаматычныя горныя пароды прыпадае каля 90% аб’ёму. Як фіз. целы горныя пароды характарызуюцца шчыльнасцю, пругкасцю, трываласцю, цеплавымі, электрычнымі, магнітнымі, радыяцыйнымі і інш. ўласцівасцямі. Горныя пароды вывучаюць геахімія, літалогія, петраграфія, петрафізіка, фізіка. Амаль усе горныя пароды могуць выкарыстоўвацца як карысныя выкапні (каменны вугаль, галіт, пясок, гліна і інш.) або як руды (апатыт, баксіт і інш.). Да руд адносяць горныя пароды з кандыцыйнай колькасцю каштоўных кампанентаў.

На Беларусі ўсе класы горных парод вядомы ў складзе асадкавага чахла крышт. фундамента. Яе тэр. ўкрыта магутным чахлом асадкавых горных парод, сярод якіх пераважаюць пясчана-алеўрытавыя (34,7% аб’ёму), карбанатныя пароды (вапнякі, даламіты, мел і інш. — 24,5%), гліны і сланцы (20,7%), солі (14,8%) і інш.

У.Я.Бардон.

т. 5, с. 365

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТА́ПЧЫК Станіслаў Аляксандравіч

(н. 7.9.1935, г. Мар’іна Горка Мінскай вобл.),

бел. вучоны ў галіне матэрыялазнаўства і фізікі металаў. Акад. АН Беларусі (1986), чл.-кар. (1984). Д-р тэхн. н. (1980), праф. (1984). Скончыў БДУ (1960). З 1960 у Фізіка-тэхн. ін-це АН Беларусі: з 1982 нам. дырэктара, з 1983 дырэктар; адначасова з 1987 акадэмік-сакратар Аддзялення фіз.-тэхн. праблем машынабудавання і энергетыкі АН. Навук. працы па тэорыі і практыцы скарасной тэрмічнай апрацоўкі канструкцыйных сталяў і сплаваў, тэхналогіях атрымання і апрацоўкі кампазіцыйных матэрыялаў, лазерным тэрмаўмацаванні матэрыялаў, лазернай мадыфікацыі паверхні, узаемадзеянні выпрамянення з рэчывам, лазерным сінтэзе. З 1987 гал. рэдактар час. «Весці АН Беларусі. Серыя фізіка-тэхнічных навук». Дзярж. прэмія СССР 1986.

Тв.:

Электротермообработка сплавов с особыми свойствами. Мн., 1977 (разам з М.М.Бадзякам).

т. 2, с. 45

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСТЭАЛО́ГІЯ

(ад астэа... + ...логія),

1) раздзел анатоміі, які вывучае будову, развіццё і змены касцявога шкілета. Вылучаюць астэалогію агульную, прыватную (пра развіццё і будову асобных касцей), параўнальную, узроставую. Агульная астэалогія вывучае фіз.-хім. якасці косці, тканкавы, клетачны і субклетачны ўзроўні структурнай арганізацыі, уплыў розных фактараў на працэсы росту і перабудовы косці. Сучасныя даследаванні ў галіне астэалогіі звязаны з пошукамі спосабаў уплыву на працэсы рэгенерацыі, вызначэннем прычын эктапічнага росту, ацэнкай характару марфалагічных змяненняў пры трансплантацыі касцей. Прыватная астэалогія грунтуецца на вывучэнні анат. прэпаратаў і выкарыстанні метадаў даследавання шкілета жывога чалавека (рэнтгенаграфія, камп’ютэрная тамаграфія, ядзерна-магнітны рэзананс).

2) Астэалогія ў антрапалогіі вывучае варыяцыі памераў і формы чалавечага шкілета ў цэлым, а таксама асобных яго касцей. Даныя астэалогіі выкарыстоўваюць таксама ў палеанталогіі, расазнаўстве і інш.

С.Л.Кабак.

т. 2, с. 60

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)