ДАНІЛЬКЕ́ВІЧ (Мечыслаў Іванавіч) (н. 14.10.1935, в. Міхнаўшчына Баранавіцкага р-на Брэсцкай вобл.),

бел. фізік. Д-р фіз.-матэм. н. (1991), праф. (1993). Скончыў БДУ (1958), там і працаваў. З 1996 у Ін-це электронікі Кашалінскага тэхн. ун-та (Польшча). Навук. працы па магн., эл., мех. уласцівасцях цвёрдых цел. Атрымаў і даследаваў шырокадыяпазонныя дыэлектрычныя спектры ферытаў; прапанаваў метад вызначэння трываласці крышталёў праз энергію крышт. рашоткі.

Тв.:

Диэлектрические свойства оксидных феррошпинелей с различным магнитным разбавлением // Неорганические материалы. 1997. Т. 33, № 3.

т. 6, с. 40

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУ́ЛІС (Ігар Міхайлавіч) (н. 16.11.1949, Мінск),

бел. фізік. Д-р фіз.-матэм. н. (1994). Скончыў БДУ (1972). З 1977 у БДУ. Навук. працы па фотафізічных працэсах у растворах і ізаляваных комплексах складаных малекул, метадах і апаратуры для лазерна-спектраскапічных даследаванняў. Распрацаваў метады атрымання звышкароткіх імпульсаў святла, якія перастройваюцца па частаце дыскрэтна ці неперарыўна. Дзярж. прэмія Беларусі 1994.

Тв.:

Спектральные сдвиги при формировании ван-дер-ваальсовских комплексов ароматических молекул с атомами инертных газов // Журн. прикладной спектроскопии. 1996. Т. 63. № 1.

т. 5, с. 527

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГУСА́К (Аляксей Адамавіч) (н. 1.11.1927, в. Іванкаўшчына Мазырскага р-на Гомельскай вобл.),

бел. матэматык. Канд. фіз.-матэм. н. (1956), праф. (1976). Скончыў БДУ (1952). З 1955 у БДУ. Навук. працы па тэорыі механізмаў, лікавых метадах, методыцы выкладання вышэйшай матэматыкі, гісторыі матэматыкі. Аўтар вучэбных дапаможнікаў «Вышэйшая матэматыка» (т. 1—2, 1976—78), «Задачы і практыкаванні па вышэйшай матэматыцы» (ч. 1—2, 1972—73) і інш.

Тв.:

Ряды и кратные интегралы. Мн., 1970;

Теория приближения функций: Ист. очерк. Мн., 1972.

т. 5, с. 541

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МАДЭЛІ́РАВАННЕ,

метад даследавання аб’ектаў пазнання на іх мадэлях; пабудова і вывучэнне мадэлей рэальна існуючых прадметаў і з’яў (арган. і неарган. сістэм, фіз., хім., біял., сац. працэсаў) і аб’ектаў канструявання. Выкарыстоўваецца для вызначэння або паляпшэння іх характарыстык, рацыяналізацыі спосабаў пабудовы, кіравання і інш. Як форма адлюстравання рэчаіснасці М. вядома з антычнасці, вял. пашырэнне атрымала ў эпоху Адраджэння. Выключную ролю ў развіцці М. як метаду навук. пазнання адыгралі працы Кельвіна, Дж.К.Максвела, А.Кекуле, А.М.Бутлерава. Універсальную значнасць М. набыло з узнікненнем ЭВМ і фармуляваннем асн. прынцыпаў кібернетыкі.

Па ўласцівасцях мадэлі робяць вывады пра ўласцівасці аб’екта, які вывучаецца. Уласцівасці, аналагічныя ў мадэлі і аб’екце і важныя для даследавання, наз. істотнымі. Падобнасць паміж аб’ектам, які мадэліруецца, і мадэллю бывае фізічная (аб’ект і мадэль маюць аднолькавую або падобную фіз. прыроду), структурная (у аб’екта і мадэлі падобныя структуры), функцыянальная (падобнасць функцый, што выконваюць аб’ект і мадэль пры адпаведных уздзеяннях), дынамічная (падобнасць паміж станамі, якія паслядоўна змяняюцца ў аб’екта і мадэлі), імавернасная (падобнасць паміж працэсамі імавернаснага характару) аб’екце і мадэлі), геаметрычная (падобнасць паміж прасторавымі характарыстыкамі аб’екта і мадэлі). Адпаведна адрозніваюць і тыпы мадэлей.

М. бывае прадметнае (даследаванне вядзецца на мадэлі, што ўзнаўляе пэўныя геам., фіз., дынамічныя, функцыян. характарыстыкі арыгінала) і знакавае (мадэлямі служаць схемы, чарцяжы, формулы, сказы ў некаторых алфавітах і інш., напр., матэматычнае мадэліраванне). Пры гэтым пабудова знакавых мадэлей замяняецца мысленна-наглядным уяўленнем знакаў ці аперацый над імі (мысленнае М.). М. цесна звязана з эксперыментам і ўяўляе сабой асобы яго від — мадэльны эксперымент (напр., у ходзе мадэльна-кібернетычнага эксперыменту замест «рэальнага» эксперым. аперыравання з аб’ектам знаходзяць алгарытм (праграму) яго функцыянавання, які выступае ў якасці мадэлі. Гл. таксама Мадэліраванне ў навуцы і тэхніцы, Мадэліраванне сацыяльнае, Мадэліраванне эканоміка матэматычнае.

Літ.:

Ракитов А.И. Философия компьютерной революции. М., 1991;

Абдеев Р.Ф. Философия информационной цивилизации. М., 1994;

Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. М., 1996.

В.В.Філіпава.

т. 9, с. 494

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ПАЛЕАГЕАГРА́ФІЯ (ад палеа... + геаграфія),

навука пра фізіка-геагр. ўмовы мінулых геал. эпох; частка гіст. геалогіі і адначасова фіз. геаграфіі. Асн. пытанні П. — размеркаванне сушы і мора ў стараж. эпохі, вобласці зносу і намнажэння асадкаў, рэльеф сушы і дна мораў, фіз.-хім. і дынамічныя асаблівасці марскіх басейнаў, клімат і інш. Метады П. грунтуюцца на вывучэнні горных парод (пашырэнне і магутнасці, структурныя і тэкстурныя асаблівасці, мінер. і хім. састаў, характар і ўмовы залягання, ізатопы кіслароду і вугляроду і інш.), а таксама арган. рэштак у іх, якія адлюстроўваюць умовы асяроддзя пры асадканамнажэнні. На аснове палеагеагр. даследаванняў складаюцца палеагеаграфічныя карты. П. цесна звязана з вучэннем аб фацыях, літалогіяй, палеанталогіяй, стратыграфіяй, геахіміяй, кліматалогіяй, геатэктонікай, геафізікай і інш. Падзяляецца на агульную П., якая вывучае асн. заканамернасці змены геагр. абалонкі Зямлі, і рэгіянальную П., якая даследуе фіз.-геагр. ўмовы пэўных тэрыторый у асобныя геал. перыяды.

П. ўзнікла ў сярэдзіне 19 ст. пасля распрацоўкі адноснай геахраналагічнай шкалы на аснове звестак біястратыграфіі, з’яўлення вучэння аб фацыях (швейц. геолаг А.Грэслі) і абгрунтавання метаду актуалізму (англ. геолаг Ч Лаель). У самаст. галіну вылучылася ў пач. 20 ст., калі палеагеагр. рэканструкцыі сталі перадумовай пошуку карысных выкапняў. Уклад у развіццё П. зрабілі рас. і сав. вучоныя М.І.Андрусаў, А.П.Карпінскі, А.Дз.Архангельскі, Дз.В.Наліўкін, М.М.Страхаў, Л.Б.Рухін, К.К.Маркаў і інш.

На Беларусі палеагеагр. даследаванні пачаліся ў 1-й пал. 20 ст. (П.А.Туткоўскі, Ф.В.Лунгерсгаўзен, М.Ф.Бліадухо). У 1950—60-я г. складзены палеагеагр. карты верхняга пратэразою, палеазою, мезазою, кайназою (В.С.Акімец, Л.М.Вазнячук, В.К.Галубцоў, С.С.Маныкін, А.С.Махнач, І.В.Міцяніна, М.М.Цапенка і інш.), вывучаны этапы развіцця расліннасці ў дэвоне-карбоне (Г.І.Кеда), антрапагене (Н.А.Махнач), даследаваны стараж. палеарэкі (Г.І.Гарэцкі). Даследаванні па праблемах карысных выкапняў абагульнены ў працах Л.Ф.Ажгірэвіч, Я.І.Аношкі, У.Я.Бардона. М.В.Вераценнікава, Э.А.Высоцкага, Г.У.Зінавенкі, С.А.Кручака, М.М.Лявых, Э.А.Ляўкова, К.М.Манкевіча, В.А.Масквіча, А.А.Махнача, А.В.Мацвеева, І.І.Ур’ева, У.І.Шкурагава і інш).

Літ.:

Рухин Л.Б. Основы общей палеогеографии. 2 изд. Л. 1962;

Геология СССР. Т. 3. Белорусская ССР. Геологическое описание. М., 1971.

С.А.Кручак.

т. 11, с. 542

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНА́ЛАГАВАЯ ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА (АВМ),

вылічальная машына, у якой апрацоўка інфармацыі выконваецца з дапамогай спецыяльна падабранага фіз. працэсу, што мадэлюе выліч. заканамернасць. Звычайна складаецца з суматараў, інтэгравальных і дыферэнцыравальных элементаў і інш. У адрозненне ад электроннай вылічальнай машыны рашэнне атрымліваецца практычна імгненна пасля задання параметраў задачы; мае простую канструкцыю і праграмаванне, але невысокую дакладнасць вылічэнняў і меншую універсальнасць.

Папярэднікамі сучаснай АВМ можна лічыць лагарыфмічную лінейку, графікі і намаграмы (гл. Намаграфія) для вызначэння функцый некалькіх пераменных, упершыню прыведзеныя ў дапаможніках па навігацыі (1971), аналагавую прыладу (планіметр) англ. вучонага Дж.Германа для вызначэння плошчы, якая ўтворана замкнутай крывой на плоскасці (1814). Першая мех. АВМ для рашэння дыферэнцыяльных ураўненняў пры праектаванні караблёў прапанавана рус. вучоным А.М.Крыловым у 1904. Сав. Матэматык С.А.Гершгорын (1927) заклаў асновы пабудовы сеткавых мадэляў АВМ.

Выкарыстоўваюцца АВМ для рашэння задач па апераджальным аналізе, аналізе дынамікі і сінтэзе сістэм кіравання і рэгулявання, у эксперыментальных даследаваннях паводзін сістэмы з апаратурай кіравання ці рэгулявання ў лабараторных умовах, пры вызначэнні ўзбурэння ці карысных сігналаў, што ўздзейнічаюць на сістэму і інш. АВМ, у якой лікавыя характарыстыкі мадэлявальнага фіз. працэсу выяўлены ў лічбавай форме, наз. гібрыднай вылічальнай машынай.

т. 1, с. 333

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПРАЦО́ЎКА МЕТА́ЛАЎ ЦІ́СКАМ,

сукупнасць тэхнал. працэсаў, у выніку якіх адбываецца пластычная дэфармацыя загатовак без парушэння іх суцэльнасці пад уздзеяннем прыкладзеных вонкавых сіл. Асн. віды апрацоўкі металаў ціскам: пракатка, прасаванне, валачэнне, коўка, штампоўка, гібка; абсталяванне: пракатныя станы, прэсы, валачыльныя станы, молаты, гібачныя машыны.

Апрацоўваюць ціскам большасць металаў і сплаваў, за выключэннем крохкіх (напр., чыгуноў), пераважна ў гарачым стане (пры т-ры больш высокай, чым т-ра рэкрышталізацыі). Пасля халоднай апрацоўкі (робіцца звычайна пры пакаёвай т-ры) пластычныя ўласцівасці металаў узнаўляюць адпалам. Часам выкарыстоўваюць і цёплую апрацоўку (пры прамежкавых т-рах). Апрацоўка металаў ціскам дае магчымасць павысіць трываласць, зменшыць шурпатасць паверхні (напр., абкаткай ролікамі) вырабаў, паменшыць расход металу, лягчэй механізуецца і аўтаматызуецца.

Тэорыя апрацоўкі металаў ціскам займаецца вызначэннем намаганняў, што абумоўліваюць пластычнае дэфармаванне; разлікам памераў і формаў загатовак; вывучае заканамернасці пластычнага цячэння металаў, уплыў апрацоўкі металаў ціскам на мех. і фіз. ўласцівасці металаў. Звязана з дасягненнямі фізікі металаў і пластычнасці тэорыі. Заснавана рус. вучоным Дз.К.Чарновым, развіта і выкладзена ў працах рус. і бел. Вучоных С.І.Губкіна, А.І.Цэлікава, А.П.Чакмарова, Г.М.Паўлава, В.П.Севярдэнкі, В.С.Смірнова, В.М.Чачына, А.В.Сцепаненкі і інш. На Беларусі работы ў галіне апрацоўкі металаў ціскам вядуцца ў Фіз.-тэхн. ін-це АН, Бел. політэхн. акадэміі і інш.

т. 1, с. 435

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАЛЮ́ТНАЕ ЗАКАНАДА́ЎСТВА,

сукупнасць прававых нормаў, якія вызначаюць парадак міжнар. разлікаў і інш. здзелак з валютнымі каштоўнасцямі ўнутры краіны і ва ўзаемаадносінах яе юрыд. і фіз. асоб з прадстаўнікамі інш. краін. Нормы валютнага заканадаўства вызначаюць агульныя прынцыпы валютных аперацый, паўнамоцтвы і функцыі дзярж. органаў у валютным рэгуляванні і кіраванні валютнымі рэсурсамі, правы і абавязкі суб’ектаў, што валодаюць валютнымі каштоўнасцямі і карыстаюцца імі, меры адказнасці і санкцыі за парушэнні правіл аб здзелках і аперацыях з валютай.

Да 1986 валютнае заканадаўства было абумоўлена валютнай манаполіяй дзяржавы, і ўсе аперацыі (здзелкі) з валютнымі каштоўнасцямі на тэр. СССР ажыццяўляліся толькі спецыяльна ўпаўнаважанымі на тое дзярж. органамі і арг-цыямі. Пасля 1986 прыняты шэраг нарматыўных актаў, накіраваных на расшырэнне правоў юрыд. і фіз. асоб у сферы валютных адносін Рэспублікі Беларусь, у т. л. законы «Аб асновах знешнеэканамічнай дзейнасці Рэспублікі Беларусь» ад 25.10.1990, «Аб інвестыцыйнай дзейнасці ў Рэспубліцы Беларусь», уведзены ў дзеянне з 1.1.1992, «Аб часовым парадку валютнага рэгулявання і правядзення валютных аперацый на тэрыторыі Рэспублікі Беларусь» ад 20.3.1992, указ Прэзідэнта Рэспублікі Беларусь «Аб устанаўленні парадку рэгулявання экспартна-імпартных і валютных аперацый і павышэнні адказнасці за парушэнне заканадаўства ў галіне знешнеэканамічнай дзейнасці» ад 8.2.1995, і інш.

т. 3, с. 496

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІПЕРГЕНЕ́З (ад гіпер... + генез),

працэс хім. і фіз. ператварэння мінералаў і горных парод у верхніх частках зямной кары і на яе паверхні пад уздзеяннем атмасферы, гідрасферы і жывых арганізмаў пры т-рах, характэрных для паверхні Зямлі. Тэрмін увёў сав. вучоны А.Я.Ферсман (1922). У зоне гіпергенезу магутнасцю ад 1—2 м да 3—5 км пад уплывам фіз., хім. і біял. фактараў адбываюцца выветрыванне горных парод і разбурэнне асобных мінералаў, што ўтварыліся ў нетрах Зямлі, перанос рыхлых прадуктаў, акісленне, асадканамнажэнне і глебаўтварэнне.

Асаблівасць зоны гіпергенезу — вял. рухомасць хім. і біяхім. рэакцый у залежнасці ад фізіка-геагр. умоў асяроддзя (клімату, рэльефу, саставу парод, якія разбураюцца, і інш.), развіцця жыццёвых працэсаў, змены акіслення і аднаўлення, гідратацыі і дэгідратацыі, тэхн. дзейнасці чалавека і інш. Гіпергенез адбываецца пры невысокіх т-рах (ад 50 да -50 °C), адносна невял. ціску, наяўнасці свабоднага актыўнага кіслароду, вады і водных раствораў. У зоне гіпергенезу намнажаюцца гліністыя прадукты (кааліны, баксіты), тэрыгенныя адклады (россыпы золата, плаціны, волава і інш.), руды жалеза, марганцу, нікелю, кобальту, рэдкіх элементаў, вапнякі, кам. вугаль, солі і інш. (Гл. Гіпергенныя радовішчы).

На Беларусі вывучэнне гіпергенных працэсаў пачата К.І.Лукашовым у 1953.

В.К.Лукашоў.

т. 5, с. 256

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)