сав. фізік. Акад.АНСССР (1953, чл.-кар. з 1946), праф. (1947). Герой Сац. Працы (1969). Скончыў БДУ (1928). З 1930 у фізіка-тэхн. ін-це, з 1944 у Ін-це атамнай энергіі, з 1957 акад.-сакратар Аддз. агульнай фізікі і астраноміі АНСССР. Навук. працы ў галіне атамнай і ядз. фізікі, электроннай оптыкі, фізікі плазмы. Даказаў выкананне закону захавання імпульсу пры анігіляцыі электрона і пазітрона, распрацаваў эл.-магн. метад раздзялення ізатопаў, упершыню атрымаў тэрмаядз. рэакцыю ва ўстойлівай квазістацыянарнай плазме (у сааўт.). Ленінская прэмія 1958. Дзярж. прэміі СССР 1953, 1971.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АКУ́СТЫКА МУЗЫ́ЧНАЯ,
раздзел тэорыі музыкі, які даследуе фізічныя заканамернасці музыкі ў аспекце яе выканання і ўспрымання. Вывучае вышыню, гучнасць, тэмбр, даўжыню і сінтэз муз. гукаў, муз. сістэмы і строі, кансананс і дысананс, некат. з’явы ў гармоніі, інструментоўцы, аркестроўцы і інш.
Навука пра акустыку музычную пачала развівацца ў Стараж Грэцыі; пазней яе развівалі Дж.Царліна, М.Мерсен, Ж.Рамо і інш. У 19 ст. распрацавана рэзанансная тэорыя слыху (Г.Гельмгольц) і тэорыя адлюстравання гукавых ваганняў (К.Штумпф). У 20 ст. з’явіліся тэарэт. даследаванні, звязаныя з зоннай прыродай слыхавога ўспрыняцця (М.Гарбузаў; гл. ў арт.Зона), акустыкай пеўчага голасу (Р.Юсан), электрамуз. інструментаў (Л.Тэрмен, А.Валодзін), а таксама з асаблівымі з’явамі электроннай музыкі і мікратэмперацыі. Гал. праблема сучасных прац — даследаванне ролі аб’ектыўных акустычных фактараў у фарміраванні муз. мовы кампазітараў 20 ст. (Я.Назайкінскі, Ю.Рагс, Ю.Антанавічус).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВІ́ЦЕБСКАЕ ВЫТВО́РЧАЕ АБ’ЯДНА́ННЕ «МАНАЛІ́Т».
Створана ў 1972 у Віцебску на базе з-даў радыёдэталей (дзейнічае з 1958) і рэзістараў (з 1968) у Віцебску і з-да «Лантан» (поўнасцю ўведзены ў 1973) у г.п. Арэхаўск Аршанскага р-на Віцебскай вобл. У 1980 увайшлі Лепельскі электрамех. з-д і з-д «Ветразь» у г.п. Бягомль Докшыцкага р-на Віцебскай вобл. Вядучы вытворца маналітных керамічных кандэнсатараў сярод краін б.СССР (забяспечвае 50% патрэбы ў іх). Асн. прадукцыя (1996): шматслойныя і аднаслойныя керамічныя і плёначныя кандэнсатары, вырабы з п’езакерамікі і інш. п’езавырабы, пазістары, шматслойныя індуктыўнасці на керамічнай падложцы для паверхневага мантажу, складанае тэхнал. абсталяванне, сістэмы электроннага запальвання, устройствы цеплавой аховы электрарухавікоў, мікрафоны, быт. пыласосы і інш. тавары шырокага ўжытку. На ВА дзейнічае н.-д.ін-тэлектроннай тэхнікі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРАМАТЫ́ЧНЫЯ ЗЛУЧЭ́ННІ,
цыклічныя арган. злучэнні, атамы якіх ствараюць адзіную спалучаную (араматычную) сістэму сувязяў. Назва ад прыемнага паху першых адкрытых такіх злучэнняў.
У вузкім сэнсе да араматычных злучэнняў адносяць толькі бензольныя злучэнні: араматычныя вуглевадароды (арэны), напр. бензол, талуол, стырол, бі-, тры- і поліцыклічныя злучэнні, пабудаваныя з бензольных ядраў, напр. нафталін, антрацэн, і іх вытворныя (галагензмяшчальныя, аміны, нітразлучэнні, фенолы і інш.). Фіз. і хім. асаблівасці араматычных злучэнняў звязаны з існаваннем у іх замкнёнай электроннай абалонкі з π-электронаў. У параўнанні з ненасычанымі злучэннямі яны больш устойлівыя, удзельнічаюць пераважна ў рэакцыях замяшчэння і захоўваюць араматычную сістэму сувязяў. У шырокім сэнсе да араматычных злучэнняў адносяць таксама гетэрацыклічныя электронныя аналагі бензолу (пірыдзін, пірол, фуран, тыяфен), небензоідныя злучэнні тыпу азуленаў, баразолу, ферацэну і інш.Асн. крыніца араматычных злучэнняў — прадукты каксавання каменнага вугалю, перапрацоўкі нафты (гл.Араматызацыя). Араматычныя злучэнні — прадукты прамысл.арган. сінтэзу (палімеры, фарбавальнікі, лекавыя сродкі, выбуховыя рэчывы).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́ЯВА
(Iowa),
штат у цэнтральнай частцы ЗША. Пл. 145,75 тыс.км². Нас. 2814 тыс.чал. (1993), гарадскога каля 60%. Адм. цэнтр — Дэ-Мойн. Буйныя гарады Сідар-Рапідс і Давенпарт. Паверхня — узгорыстая раўніна сярэдняй выш. 400—500 м са слядамі зледзянення. Клімат цёплы, умерана кантынентальны. Сярэднія т-ры студз. ад -10 да -6 °C, ліп. 23 °C, ападкаў 700—890 мм за год. Гал. рэкі Місісіпі з прытокамі Сідар, Аява, Дэ-Мойн і Місуры. Пераважаюць прэрыі з урадлівымі глебамі, пад лесам каля 7% тэрыторыі. Вядучы сектар эканомікі — апрацоўчая прам-сць: вытв-сцьс.-г. Машын, халадзільнага абсталявання, электроннай тэхнікі, быт. электрапрылад, аўтапрылад, мінер. угнаенняў, хім. і дрэваапр. прадпрыемствы і інш. Здабыча буд. каменю, цэментнай сыравіны, пяску і жвіру. Аява — адзін з гал. штатаў па вытв-сці с.-г. прадукцыі. Вырошчваюць кукурузу на зерне і сілас, сою, авёс, сеяныя травы. Гадуюць свіней, авечак, хатнюю птушку. Адкорм буйн. раг. жывёлы. Развітая сетка шляхоў зносін. Суднаходства па рэках Місісіпі і Місуры. Турызм.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДБО́РУ ПРА́ВІЛЫў фізіцы,
умовы, што вызначаюць магчымасць пераходу квантавых сістэм (ядраў, атамаў, малекул і інш.) з пачатковага стану ў канчатковы пры фіз. працэсах, звязаных з выпрамяненнем і паглынаннем энергіі.
Адбору правілы выражаюць выкананне пэўных захавання законаў у дадзеным працэсе і фармулююцца ў выглядзе суадносін паміж квантавымі лікамі. Аснова тэарэт. вызначэння адбору правілаў — патрабаванне адрознення ад нуля імавернасці пераходу паміж пач. і канчатковым станамі сістэмы, напр., імавернасць дыпольных пераходаў, звязаных з выпрамяненнем святла атамам, адрозніваецца ад нуля пры змене квантавых лікаў; ΔL = ±1, Δs = 0, ΔI = 0 або ±1 (за выключэннем, калі I = 0 у пач. і канчатковым станах), дзе I, L і s — адпаведна квантавыя лікі поўнага моманту імпульсу электроннай абалонкі, арбітальнага моманту і агульнага спінавага моманту электронаў. Пераходы, якія падпарадкоўваюцца адбору правілам дыпольнага выпрамянення, наз. дазволенымі, у адваротным выпадку — забароненымі (іх імавернасць у атамах вельмі малая). Адпаведныя адбору правілы існуюць у ядз. спектраскапіі і фізіцы элементарных часціц.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА,
інструментальны сродак (або сукупнасць сродкаў) для апрацоўкі інфармацыі, у т. л. вылічэнняў, кіравання, рашэння задач. Бываюць мех., эл., электронныя, гідраўл., пнеўматычныя, аптычныя і камбінаваныя; у залежнасці ад формы выяўлення інфармацыі адрозніваюць аналагавыя вылічальныя машыны, лічбавыя вылічальныя машыны і гібрыдныя вылічальныя сістэмы.
Першы праект універсальнай «аналітычнай машыны» (гіганцкага арыфмометра з праграмным кіраваннем, арыфм. і запамінальным блокам), які, аднак, не быў поўнасцю рэалізаваны, распрацаваў англ. вынаходца і матэматык Ч.Бэбідж у 1883. Асн. ідэі праекта закладзены ў аснову работы сучаснай вылічальнай машыны: праграма вылічэнняў захоўваецца ў памяці машыны і выконваецца аўтаматычна. Развіццё электратэхнікі і радыёэлектронікі прывяло да стварэння ў 1930-я г. спецыялізаваных аналагавых вылічальных машын. Першыя электронныя вылічальныя машыны, заснаваныя на выяўленні інфармацыі ў лічбавай двайковай форме, распрацаваны ў 1940-я г. на аснове развіцця эл. пераключальных схем у аўтам.тэлеф. сувязі, электроннай кантрольна-вымяральнай апаратуры, радыёлакацыі. Гл. таксама Вылічальная машына «Мінск», Вылічальная тэхніка, Вылічальны цэнтр, Вылічальная сістэма.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГУ́КАПІС у музыцы, увасабленне сродкамі музыкі розных гукавых і пазагукавых з’яў навакольнага свету. Апіраецца на выяўл. магчымасці муз. мастацтва, якія выступаюць у 2 асн. тыпах: гукавая імітацыя і выяўленчасць асацыятыўнага характару. Сярод рэальных гучанняў прадметнага асяроддзя, якія часта імітуюцца ў музыцы: пляск хваль, шум мора, шапаценне лесу (у оперы «Марынка» Р.Пукста), гучанне муз. інструментаў, гаворка, стогны, плач чалавека і інш. Імітацыя можа быць ідэнтычная аб’екту пераймання па тэмбры, інтанацыях ці больш апасродкаванай. Гукавыяўленчасць асацыятыўнага тыпу засн. на слыхавым успрыманні муз. гукаў як узаемазвязаных з рознымі пазагукавымі з’явамі (дынамічнымі, каларыстычнымі, аптычнымі). Асацыятыўны гуказапіс часта выступае як элемент праграмнай музыкі, дзе загалоўкі і рэмаркі канкрэтызуюць вобразны змест. На практыцы імітацыйны і асацыятыўны гуказапісы часта аб’ядноўваюцца (харэаграфічная навела «Мушкецёры» Я.Глебава). З узнікненнем электроннай музыкі (муз. камп’ютэраў, сінтэзатараў і інш.эл.-муз. канструкцый) у гуказапісе шырока выкарыстоўваюцца новыя гукавыяўл. эфекты, незвычайныя, «незямныя», «касмічныя» гучнасці (у т. л. ў кіно, драм. т-ры, на эстрадзе і інш.).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛАПАТО́ Георгій Паўлавіч
(н. 23.8.1924, в. Азершчына Рэчыцкага р-на Гомельскай вобл.),
бел. вучоны ў галіне вылічальнай тэхнікі і інфарматыкі. Чл.-кар.Нац.АН Беларусі (1995), чл.-кар.Рас.АН (1979). Д-ртэхн.н. (1976), праф. (1980). Скончыў Маскоўскі энергет.ін-т (1952). З 1959 на Мінскім з-дзе ЭВМ. У 1969—72 дырэктар Мінскага філіяла Н.-д. цэнтра электроннайвыліч. тэхнікі. З 1972 у НДІЭВМ (у 1972—87 дырэктар), адначасова ў Мінскім радыётэхнічным ін-це. У 1992—95 дырэктар навук.-інж. цэнтра «Нейракамп’ютэр», з 1995 у Ін-це сучасных ведаў. Навук. працы па распрацоўцы і вытв-сці ЭВМ сям’і «Мінск», ЭВМ Адзінай сістэмы, выліч. комплексаў, сістэм і сетак, аўтаматызацыі праектавання ЭВМ. Гал. канструктар ЭВМ «Мінск-1», шматмашынных сістэм «Мінск-222», сістэмы калект. карыстання «Нарач», шэрагу рухомых (бартавых ЭВМ), спец.выліч. комплексаў. Дзярж. прэмія СССР 1970.
Тв.:
Вычислительная техника в Белоруссии // Информационные технологии и вычислительные системы. 1997. № 1.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АНА́ЛАГАВАЯ ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА
(АВМ),
вылічальная машына, у якой апрацоўка інфармацыі выконваецца з дапамогай спецыяльна падабранага фіз. працэсу, што мадэлюе выліч. заканамернасць. Звычайна складаецца з суматараў, інтэгравальных і дыферэнцыравальных элементаў і інш. У адрозненне ад электроннай вылічальнай машыны рашэнне атрымліваецца практычна імгненна пасля задання параметраў задачы; мае простую канструкцыю і праграмаванне, але невысокую дакладнасць вылічэнняў і меншую універсальнасць.
Папярэднікамі сучаснай АВМ можна лічыць лагарыфмічную лінейку, графікі і намаграмы (гл.Намаграфія) для вызначэння функцый некалькіх пераменных, упершыню прыведзеныя ў дапаможніках па навігацыі (1971), аналагавую прыладу (планіметр) англ. вучонага Дж.Германа для вызначэння плошчы, якая ўтворана замкнутай крывой на плоскасці (1814). Першая мех. АВМ для рашэння дыферэнцыяльных ураўненняў пры праектаванні караблёў прапанавана рус. вучоным А.М.Крыловым у 1904. Сав. Матэматык С.А.Гершгорын (1927) заклаў асновы пабудовы сеткавых мадэляў АВМ.
Выкарыстоўваюцца АВМ для рашэння задач па апераджальным аналізе, аналізе дынамікі і сінтэзе сістэм кіравання і рэгулявання, у эксперыментальных даследаваннях паводзін сістэмы з апаратурай кіравання ці рэгулявання ў лабараторных умовах, пры вызначэнні ўзбурэння ці карысных сігналаў, што ўздзейнічаюць на сістэму і інш. АВМ, у якой лікавыя характарыстыкі мадэлявальнага фіз. працэсу выяўлены ў лічбавай форме, наз. гібрыднай вылічальнай машынай.