ГАЗАСТРУМЕ́ННЫЯ ВЫПРАМЯНЯ́ЛЬНІКІ,
механічныя генератары гукавых (або ультрагукавых) ваганняў, крыніцай энергіі якіх з’яўляецца высокаскарасны газавы струмень. Адрозніваюць свісткі (напр., Гальтана свісток), генератары (Гартмана генератар) і сірэны. Выкарыстоўваюцца ў кантрольнавымяральнай і сігналізавальнай апаратуры, для распылення вадкасцей, атрымання або асаджэння аэразоляў, у розных тэхнал. устаноўках для інтэнсіфікацыі цепла- і масаабмену і інш.
Гальтана свісток мае сапло з вузкай кальцавой шчылінай, перад якой размешчаны пустацелы цыліндрычны рэзанатар з вострымі клінападобнымі краямі. Газ, што выходзіць пад невял. ціскам, накіроўваецца на востры край рэзанатара і ўзбуджае ў ім перыядычныя віхры. У Гартмана генератары з сапла выцякае звышгукавы газавы струмень. Рэзанатар размешчаны сувосна з саплом у зоне няўстойлівасці газавага струменя. Частата выпрамененага гуку залежыць ад памераў рэзанатара і адлегласці паміж ім і саплом. Прынцып дзеяння сірэн заснаваны на мех. перыядычным перарыванні газавага (або вадкаснага) струменя з дапамогай заслонкі, цыліндра або дыска з адтулінамі.
т. 4, с. 429
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
А́СТМА
(ад грэч. asthma удушша),
1) бранхіяльная астма — звычайна хранічная алергічная хвароба, якая характарызуецца паўторнымі прыступамі ўдушша з прычыны спазмаў бронхаў і ацёку іх слізістай абалонкі пад уплывам алергенаў. Узнікненню астмы садзейнічае спадчынная схільнасць да алергічных рэакцый. Частата прыступаў удушша ад 1—2 за тыдзень (мяккая форма) да некалькіх за суткі (цяжкая форма), пры зацяжной форме астматычны стан доўжыцца некалькі дзён. Прыступы суправаджаюцца цяжкім са свістам дыханнем, сінюшнасцю твару, набуханнем вен на шыі, пад канец пакашліваннем і выдзяленнем невял. колькасці шклопадобных макрот. Акрамя імуналагічнай астма можа мець неімуналагічную аснову, калі яе прыступы развіваюцца пры зменах надвор’я, ахаладжэнні, фіз. напружанні, вегетатыўна-рэфлекторным дысбалансе, ужыванні нестэроідных процізапаленчых лек. сродкаў (напр., аспірыну). Ускладненні: эмфізема лёгкіх, разрастанне злучальнай тканкі вакол бронхаў, змены мышцаў правага жалудачка сэрца і як вынік сардэчная недастатковасць. Лячэнне медыкаментознае, інгаляцыямі аэразоляў.
2) Сардэчная астма — прыступы рэзкай задышкі (удушша), абумоўленыя вострай недастатковасцю функцыі левага жалудачка сэрца. Развіваецца пры гіпертанічнай хваробе, інфаркце міякарда, пароках сэрца, хранічных нефрытах і інш. Доўжыцца ад некалькіх мінут да некалькіх гадзін (магчымы ацёк лёгкіх). Лячэнне тэрапеўтычнае.
М.А.Скеп’ян.
т. 2, с. 46
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІДРАПРЫВО́Д,
сукупнасць крыніцы энергіі і прыстасаванняў для яе ператварэння і транспарціроўкі пры дапамозе вадкасці да прывадной машыны. Мэта ўжывання гідрапрывода — атрыманне патрэбнай залежнасці скорасці прывадной машыны ад нагрузкі, больш поўнае выкарыстанне магутнасці рухавіка, змяншэнне ўдарных нагрузак і інш. Як крыніца энергіі выкарыстоўваюцца эл. або цеплавы рухавікі, вадкасць пад ціскам і інш. У залежнасці ад віду гідраперадачы адрозніваюць гідрапрывод гідрастатычны (аб’ёмны), гідрадынамічны і змешаны (гл. Гідрастатычная перадача, Гідрадынамічная перадача).
Аб’ёмны гідрапрывод дазваляе з высокай дакладнасцю падтрымліваць або змяняць скорасць машыны пры адвольным нагружанні, дакладна ўзнаўляць зададзеныя рэжымы вярчальнага або зваротнапаступальнага руху. Выкарыстоўваецца ў металарэзных станках, прэсах, сістэмах кіравання лятальных апаратаў, суднаў, цяжкіх аўтамабіляў, цеплавых рухавікоў, гідратурбін, часам — як гал. прывод на аўтамабілях, кранах. Дынамічны гідрапрывод дазваляе ажыццяўляць толькі вярчальны рух, частата вярчэння яго вядучага вала аўтаматычна мяняецца са зменай нагрузкі. Выкарыстоўваецца для прывода грабных вінтоў, сілкавальных помпаў ЦЭС, шахтавых пад’ёмных машын, вентылятараў і інш. Змешаны гідрапрывод выкарыстоўваюць у штамповачных прэсах (цэнтрабежная помпа падае вадкасць у гідрацыліндр, які прыводзіць у рух рабочы інструмент прэса), машынах для запуску газавых турбін і інш.
І.У.Качанаў.
т. 5, с. 231
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГА́МА-ВЫПРАМЯНЕ́ННЕ
(γ-выпрамяненне),
караткахвалевае эл.-магн. выпрамяненне з даўжынёй хвалі, меншай за 2·10-10 м. Узнікае пры распадзе радыеактыўных ядраў (гл. Радыеактыўнасць), тармажэнні хуткіх зараджаных часціц у рэчыве (гл. Тармазное выпрамяненне), сінхратронным выпрамяненні, а таксама пры анігіляцыі электронна-пазітронных пар і ў інш. ядз. рэакцыях. З прычыны кароткай даўжыні хвалі ў гама-выпрамяненні выразныя карпускулярныя ўласцівасці (гл. Комптана эфект, Фотаэфект), хвалевыя (дыфракцыя, інтэрферэнцыя) выражаны слаба.
Асн. характарыстыка гама-выпрамянення — энергія асобнага γ-кванта Eγ =hν, дзе h — Планка пастаянная, ν — частата выпрамянення. Пры пераходзе ядра атама з узбуджанага стану з энергіяй Eі у больш нізкі энергет. стан Ek выпрамяняецца γ-квант з энергіяй Eγ = Ei = Ek Eγ = Ei — Ek. У выніку гэтага гама-выпрамянення ядраў мае лінейчасты спектр. Натуральныя радыеактыўныя крыніцы даюць гама-выпрамяненню з энергіяй да некалькіх мегаэлектронвольтаў (МэВ), у ядз. рэакцыях атрымліваюцца γ-кванты з энергіяй да дзесяткаў Мэв, а пры тармазным выпрамяненні — да соцень Мэв і больш. Гама-выпрамяненне — адно з найбольш пранікальных выпрамяненняў (пранікальнасць залежыць ад энергіі γ-квантаў і шчыльнасці рэчыва).
Гама-выпрамяненне выкарыстоўваецца для выяўлення дэфектаў у вырабах і дэталях (гл. Дэфектаскапія), экспрэснага колькаснага вызначэння волава ў рудах, стэрылізацыі харч. прадуктаў, гаматэрапіі злаякасных пухлін і інш.
А.І.Болсун.
т. 5, с. 8
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГУК,
ваганні часцінак пругкага асяроддзя (газападобнага, вадкага або цвёрдага), якія распаўсюджваюцца ў ім у выглядзе хваль; пругкія хвалі малой інтэнсіўнасці. У залежнасці ад частаты ваганняў адрозніваюць чутныя гукі (частата ад 16 Гц да 20 кГц; выклікаюць гукавыя адчуванні пры ўздзеянні на органы слыху чалавека), інфрагук (умоўна ад 0 да 16 Гц), ультрагук (ад 20 кГц да 1 ГГц) і гіпергук (больш за 1 ГГц; верхняя мяжа вызначаецца атамна-малекулярнай будовай асяроддзя). Гук вывучаецца ў акустыцы.
Гук можа ўзнікаць у выніку розных працэсаў, што выклікаюць узбурэнне асяроддзя (мясц. змена ціску або мех. напружання ад раўнаважнага значэння, лакальныя зрушэнні часцінак ад стану раўнавагі). У газападобных і вадкіх асяроддзях распаўсюджваюцца падоўжныя хвалі, скорасць якіх вызначаецца сціскальнасцю і шчыльнасцю асяроддзя (гл. Скорасць гуку); у цвёрдых целах акрамя падоўжных могуць распаўсюджвацца папярочныя і паверхневыя акустычныя хвалі са скарасцямі, якія вызначаюцца пругкімі канстантамі і шчыльнасцю (гл. Фанон). У некат. выпадках назіраецца дысперсія гуку (гл. Дысперсія хваль), абумоўленая фіз. працэсамі ў рэчыве, а таксама хваляводным характарам распаўсюджвання ў абмежаваных аб’ёмах. Пры распаўсюджванні гуку маюць месца звычайныя для ўсіх тыпаў хваль з’явы інтэрферэнцыі, дыфракцыі, затухання (гл. Паглынанне гуку). Калі памер перашкод ці неаднароднасцей асяроддзя вялікі (у параўнанні з даўжынёй хвалі), распаўсюджванне падпарадкоўваецца законам геаметрычнай акустыкі. Пры распаўсюджванні гукавых хваль вял. амплітуды адбываюцца паступовае скажэнне формы гарманічнай хвалі і набліжэнне яе да ўдарнай і інш. эфекты (гл. Нелінейная акустыка, Кавітацыя). Гук выкарыстоўваецца для сувязі і сігналізацыі (напр., у водным асяроддзі гэта адзіны від сігналаў для сувязі, навігацыі і лакацыі; гл. Гідраакустыка), нізкачастотны гук — пры даследаваннях зямной кары, ультрагук — у кантрольна-вымяральных мэтах (напр., у дэфектаскапіі), для актыўнага ўздзеяння на рэчыва (ультрагукавая ачыстка, мех. апрацоўка, зварка, рэзка і інш.), высокачастотны гук (асабліва гіпергук) — пры даследаваннях у фізіцы цвёрдага цела.
П.С. Габец, А.Р.Хаткевіч.
т. 5, с. 522
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫПРАМЯНЕ́ННЕ электрамагнітнае, свабоднае электрамагнітнае поле, якое існуе незалежна ад крыніц, што яго ствараюць; працэс утварэння свабоднага электрамагнітнага поля. Выпрамяненню ўласцівы т.зв. карпускулярна-хвалевы дуалізм. Асн. хвалевыя характарыстыкі выпрамянення — частата ν (або даўжыня хвалі ), дзе c — скорасць святла ў вакууме), а таксама хвалевы вектар
, дзе — адзінкавы вектар напрамку распаўсюджвання хвалі. Хвалевыя ўласцівасці выпрамянення праяўляюцца ў наяўнасці інтэрферэнцыі і дыфракцыі (гл. Дыфракцыя хваль, Інтэрферэнцыя хваль). Карпускулярныя ўласцівасці характарызуюцца тым, што кожнай асобнай хвалі з частатой ν і хвалевым вектарам адпавядае часціца (квант або фатон) з энергіяй і імпульсам
, дзе h — Планка пастаянная. Карпускулярныя ўласцівасці праяўляюцца ў квантавых з’явах, напр., фотаэфект, Комптана эфект і інш.
Праяўленне хвалевых ці карпускулярных (квантавых) уласцівасцей выпрамянення залежыць ад яго частаты, па значэннях якой выпрамяненне ўмоўна падзяляецца на дыяпазоны (гл. табл.). <TABLE> Для хваль вял. даўжыні (напр., ЗВЧ, радыёхвалі) энергія квантаў вельмі малая, таму карпускулярныя ўласцівасці выпрамянення практычна не праяўляюцца. З павелічэннем частаты расце энергія квантаў і з інфрачырвонага дыяпазону ўжо пачынаюць пераважаць карпускулярныя ўласцівасці.
Уласцівасці выпрамянення для малых частот апісваюцца класічнай электрадынамікай, для вялікіх — квантавай. Паводле класічных Максвела ўраўненняў выпрамяненне ў кожным пункце прасторы і ў кожны момант часу характарызуецца напружанасцямі электрычнага і магнітнага палёў і пераносіць энергію, аб’ёмная шчыльнасць якой
. У квантавай тэорыі ўраўненні Максвела поўнасцю захоўваюцца, аднак велічыні і маюць іншы сэнс. У гэтым выпадку сувязь паміж хвалевымі і карпускулярнымі ўласцівасцямі выпрамянення мае статыстычны характар: шчыльнасць энергіі эл.-магн. хвалі вызначаецца лікам квантаў у адзінцы аб’ёму
, для асобнага кванта імавернасць яго знаходжання ў пэўным аб’ёме прапарцыянальная шчыльнасці энергіі.
Выпрамяненне ўзнікае ў рэчыве пры нераўнамерным руху эл. зарадаў ці змене магн. момантаў, у выніку чаго рэчыва траціць энергію і адбываюцца працэсы выпрамянення. Да іх адносяцца выпрамяненне бачнага, ультрафіялетавага і інфрачырвонага святла атамамі і малекуламі, γ-выпрамяненне атамных ядраў, выпрамяненне радыёхваль антэнамі. Адваротныя працэсы выпрамянення — працэсы паглынання. Пры іх за кошт энергіі выпрамянення павялічваецца энергія рэчыва. Паводле законаў класічнай электрадынамікі сістэма рухомых зараджаных часціц неперарыўна траціць энергію ў выглядзе выпрамянення — адбываецца неперарыўны працэс утварэння эл.-магн. хваль. Аднак у квантавых сістэмах працэсы выпрамянення і паглынання дыскрэтныя і адбываюцца ў адпаведнасці з законамі квантавых пераходаў (гл. Вымушанае выпрамяненне, Спантаннае выпрамяненне).
М.А.Ельяшэвіч, Л.М.Тамільчык.
т. 4, с. 318
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)