лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл.Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.
Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.
Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗВА́РКА,
нераздымнае злучэнне дэталей машын, канструкцый і збудаванняў пры іх награванні або пластычным дэфармаванні, у выніку якіх у месцы злучэння ўстанаўліваюцца трывалыя міжатамныя сувязі. Вызначаецца прадукцыйнасцю, універсальнасцю і эканамічнасцю. Пашырана ў прам. вытв-сці і буд-ве (гл.Зварныя канструкцыі). Найб. значэнне мае З. металаў і сплаваў; зварваюць таксама пластмасу, шкло, кераміку і інш.
Адрозніваюць З. плаўленнем і З. ціскам (пластычным дэфармаваннем). Да З. плаўленнем адносяцца: адзін з відаў высокачастотнай зваркі, газавая зварка, дугавая зварка, у т.л. газаэлектрычная зварка і падводная (гл.Падводная зварка і рэзка), лазерная зварка, плазменная зварка, электрашлакавая зварка, электронна-прамянёвая зварка і інш. Да З. ціскам адносяцца: адзін з відаў ВЧ-зваркі, кантактавая зварка, зварка выбухам, зварка трэннем, ультрагукавая зварка, халодная зварка, дыфузійная зварка і інш. У залежнасці ад віду зварачнага абсталявання адрозніваюць ручную, механізаваную і аўтам.
З.; ад спосабу аховы зварнога шва ад шкоднага ўздзеяння паветра — З. ў ахоўных газах, у вакууме, пад флюсам, з аховай шлакам; ад тыпу электродаў — З. плаўкімі і няплаўкімі (вугальнымі, вальфрамавымі і інш.) электродамі. Да зварачных адносяць таксама працэсы пайкі, наплаўкі і інш. Найпрасцейшыя віды З. (кавальская зварка, ліцейная) узніклі з пачаткам вытв-сці і апрацоўкі металаў. Найб. пашыраныя віды электразваркі (дугавая, кантактавая) створаны ў 19 ст. ў выніку прац В.У.Лятрова, М.М.Бенардоса, М.Г.Славянава і інш. Першую гарэлку зварачную (ацэтыленакіслародную) сканструяваў франц.інж. Э.фушэ (1903). Праблемы З. вывучаюцца ў Ін-це электразваркі АН Украіны і інш. Важныя даследаванні ў галіне З. правялі Я.А.Патон, Б.Я.Патон, Г.А.Нікалаеў, М.М.Рыкалін, К.К.Хрэнаў і інш.
Літ.:
Сварка в СССР. Т. 1—2. М., 1981;
Руге Ю. Техника сварки: Справ. Пер. с нем. Ч. 1—2. М., 1984;
Гурд Л.М. Основы технологии сварки: Пер. с англ.М., 1985;