ВА́ГІ,

прылада для вымярэння масы цела па ўздзеянні на яго сілы цяжару; прылада для вымярэння фіз. велічынь, што характарызуюцца сілай або момантам сілы. Найб. пашыраны рычажныя вагі, прынцып дзеяння якіх засн. на законах раўнавагі рычага; спружынныя — на Гука законе. У электронных вагах мерай вагі цела з’яўляюцца эл. велічыні (сіла току або напружанне). Гідраўлічныя вагі па сваёй будове падобныя на гідраўлічны прэс. Адлік паказанняў праводзяць па манометры, які праградуіраваны ў адзінках масы.

Паводле прызначэння адрозніваюць метралагічныя ўзорныя (для праверкі гіраў), лабараторныя (вагі аналітычныя, мікрааналітычныя, прабірныя і інш.) і агульнага прызначэння, паводле прынцыпу дзеяння — рычажныя (напр., шалі, бязмен), квадрантавыя, спружынныя, электронныя, гідрастатычныя (гл. Гідрастатычнае ўзважванне) і гідраўлічныя (пнеўматычныя); па найб. мяжы ўзважвання вагі агульнага прызначэння падзяляюць на настольныя (да 50 кг), перасоўныя (да 6 т), стацыянарныя (аўтамабільныя, вагонныя, бункерныя і інш.; да 200 т).

П.А.Пупкевіч.

т. 3, с. 429

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СІНЫ двух лікаў,

дзель аднаго ліку на другі. Адносіны дзвюх аднародных велічынь наз. лік, які атрымліваецца ў выніку вымярэння першай велічыні, калі другая прынята за адзінку. Калі 2 велічыні вымераны з дапамогай адной і той жа адзінкі, то іх адносіны роўныя адносінам лікаў, якія іх вымяраюць. Адносіны даўжынь 2 адрэзкаў выражаюцца рацыянальным (сувымерныя адрэзкі) або ірацыянальным (несувымерныя адрэзкі) лікам. Паводле Эўкліда, 4 адрэзкі a, b, a′, b′ утвараюць прапорцыю a : b = a′ : b′, калі для адвольных натуральных лікаў m і n выконваецца адна з суадносін ma = nb, ma > nb, ma < nb адначасова з адпаведнымі суадносінамі ma′ = nb′, ma′ > nb′, ma′ < nb′. У выпадку несувымернасці a і b — разбіўка ўсіх рацыянальных лікаў x = m/n на 2 класы па прыкмеце а > xb або а < xb супадае з разбіўкай па прыкмеце a′ > xb′ або a′ < xb′, што адпавядае сутнасці ідэі сучаснай тэорыі дэдэкінда сячэнняў.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІБРЫ́ДНАЯ ВЫЛІЧА́ЛЬНАЯ СІСТЭ́МА,

камбінаваны комплекс з некалькіх вылічальных машын з рознай формай выяўлення велічынь (аналагавай і лічбавай), аб’яднаных агульнай сістэмай кіравання. Спалучае якасці і ўласцівасці аналагавых і лічбавых выліч. машын. Выкарыстоўваецца, калі магчымасці аналагавых і лічбавых выліч. машын, узятых паасобку, недастатковыя: пры мадэляванні задач кіравання (у рэальным маштабе часу) рухомымі аб’ектамі (у т. л. ў сістэмах саманавядзення), энергет. комплексамі; стварэнні комплексных трэнажораў і інш.

Адрозніваюць аналага-арыентаваныя, лічбава-арыентаваныя і збалансаваныя (найб. магутныя) гібрыдныя вылічальныя сістэмы. Структура гібрыднай вылічальнай сістэмы, патрабаванні да яе асобных частак залежаць ад галіны выкарыстання і вынікаў дэталёвага аналізу тыповых задач. Разгалінаванне выліч. працэсу паміж аналагавымі і лічбавымі машынамі, якія працуюць у комплексе, забяспечвае высокую дакладнасць і магчымасць выканання многафункцыянальных аперацый, павялічвае агульнае хуткадзеянне і інш.

На Беларусі даследаванні па праблемах гібрыднай вылічальнай сістэмы вядуцца ў Бел. ун-це інфарматыкі і радыёэлектронікі. Распрацаваныя сістэмы выкарыстоўваюцца на аб’ектах судна- і машынабудавання, энергетыкі.

А.С.Кабайла.

т. 5, с. 216

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫРАДЖЭ́ННЕ ў квантавай механіцы, уласцівасць некаторых фізічных велічынь, што апісваюць фіз. сістэму (атам, малекулу і інш.), мець аднолькавае значэнне для розных станаў сістэмы. Колькасць станаў сістэмы, якім адпавядае адно і тое ж значэнне пэўнай фіз. велічыні, наз. кратнасцю выраджэння дадзенай фіз. велічыні. Напр., калі не ўлічваць эл.-магн. і слабыя ўзаемадзеянні («выключыць» іх), то ўласцівасці пратона і нейтрона будуць аднолькавыя і іх можна разглядаць як 2 станы адной часціцы (нуклона), якія адрозніваюцца толькі эл. зарадам.

Найб. важнае выраджэнне ўзроўняў энергіі: сістэма мае пэўнае значэнне энергіі, але пры гэтым можа быць у розных станах. Напр., свабодная часціца мае бясконцакратнае выраджэнне энергіі: энергія вызначаецца модулем імпульсу, а напрамак імпульсу можа быць любым. Пры руху часціцы ў знешнім сілавым полі выраджэнне можа поўнасцю або часткова здымацца, напр., у магн. полі выяўляецца залежнасць энергіі ад напрамку магн. моманту часціцы: пры ўзаемадзеянні з полем часціцы атрымліваюць дадатковую энергію і ўзроўні энергіі «расшчапляюцца» (гл. Зеемана з’ява). Расшчапленне ўзроўняў энергіі часціц у знешнім эл. полі гл. ў арт. Штарка з’ява.

Л.М.Тамільчык.

т. 4, с. 319

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНАЯ ТЭ́ХНІКА,

галіна навукі і тэхнікі, звязаная з вывучэннем, вырабам і выкарыстаннем сродкаў вымярэнняў. Грунтуецца на навук. дысцыплінах, якія вывучаюць метады і сродкі атрымання колькаснай інфармацыі аб велічынях, што характарызуюць аб’екты і вытв. працэсы. Уключае вымяральныя прылады, інструменты, машыны і ўстаноўкі, прызначаныя для рэгістрацыі вынікаў вымярэння. Звязана з вылічальнай тэхнікай, кібернетыкай тэхнічнай, тэлемеханікай, электронікай, аўтаматыкай і інш.

Вымяральная тэхніка ўзнікла ў глыбокай старажытнасці і была звязана з вымярэннем мас і аб’ёмаў, адлегласцей і плошчаў, адрэзкаў часу, вуглоў і г.д. Да 16—18 ст. адносіцца ўдасканаленне гадзіннікаў і вагаў, вынаходства мікраскопа, барометра, тэрмометра. У канцы 18 — 1-й пал. 19 ст. з пашырэннем паравых рухавікоў і развіццём машынабудавання развіваецца прамысл. вымяральная тэхніка: удасканальваюцца прылады для вызначэння памераў, з’яўляюцца вымяральныя машыны, уводзяцца калібры, розныя меры фіз. велічынь (у т. л. эталоны) і г.д. У 19 ст. створаны асновы тэорыі вымяральнай тэхнікі і метралогіі, пашырылася метрычная сістэма мер, з’явіліся электравымяральныя прылады і цеплатэхнічныя прылады. У 20 ст. пачынаюць выкарыстоўвацца эл. і электронныя сродкі для вымярэння мех., цеплавых, аптычных і інш. велічынь, для хім. аналізу і геолагаразведкі, развіваюцца радыёвымярэнні і спектраметрыя, узнікае прыладабуд. прам-сць. Гал. кірункі развіцця сучаснай вымяральнай тэхнікі: лінейныя і вуглавыя вымярэнні; мех., аптычныя, акустычныя, цеплафіз., фіз.-хім. вымярэнні; эл., магн. і радыёвымярэнні; вымярэнні частаты і часу, выпрамяненняў (гл., напр., Арэометр, Асцылограф, Вакуумметр, Вісказіметр, Вымяральны пераўтваральнік, Газааналізатар, Геадэзічныя прылады і інструменты, Дазіметрычныя прылады, Інтэрферометр, Каларыметр, Люксметр, Манометр, Пнеўматычны пераўтваральнік, Радыёвымяральныя прылады, Спектрометр, Частатамер).

Шырока выкарыстоўваюцца (пераважна ў машынабудаванні) вымяральныя інструменты: універсальныя (для вымярэння дыяпазонаў памераў) і бясшкальныя (для вымярэння аднаго пэўнага памеру). Універсальныя падзяляюцца на штрыхавыя (штанген-інструменты, вугламеры, лінейкі, вугольнікі, кронцыркулі), мікраметрычныя (глыбінямеры, мікрометры, нутрамеры), механічныя з рознымі тыпамі мех. перадач (індыкатары гадзіннікавага тыпу, мініметры, мікатары), оптыка-механічныя (праектары, вымяральныя мікраскопы) і інш. Многія прылады далучаюць розныя канструкцыйныя асаблівасці, напр. аптыметры (рычажна-аптычная сістэма). Бясшкальныя інструменты — сродкі допускавага кантролю; гэта калібры (кольцы, шаблоны, коркі, скобы) і канцавыя меры (стальныя пліткі пэўнай таўшчыні ў наборах). Адным з гал. кірункаў далейшага развіцця вымяральнай тэхнікі з’яўляецца распрацоўка інфарм.-вымяральных сістэм. Удасканальваюцца сродкі дылатаметрыі, дазіметрыі, мас-спектраметрыі, рэфрактаметрыі, тэлеметрыі. Тэарэт. і навук.-практычную аснову ўдасканалення вымяральнай тэхнікі як аднаго з кірункаў прыладабудавання складаюць дасягненні і распрацоўкі ў галіне фіз тэхн. навук. На Беларусі сродкі вымяральнай тэхнікі выпускаюць Гомельскі завод вымяральных прылад, Віцебскае вытворчае аб’яднанне «Электравымяральнік» і інш.

А.Р.Архіпенка, У.М.Сацута.

т. 4, с. 314

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫМЯРА́ЛЬНЫЯ ПРЫЛА́ДЫ,

сродкі вымярэння, якія даюць магчымасць непасрэдна адлічваць (рэгістраваць) значэнне велічыні, што вымяраецца.

Паводле прызначэння падзяляюцца на электравымяральныя прылады, цеплатэхнічныя прылады, метэаралагічныя прылады, гідралагічныя прылады, актынаметрычныя (актынометры, піргеліёметры, альбедометры, балансамеры), астранамічныя інструменты і прылады, геадэзічныя прылады і інструменты, акустычныя (фазометры, шумамеры, акустычныя інтэрферометры і інш.), метралагічныя (эталонныя) прылады для градуіроўкі і праверкі рабочых вымяральных прылад (напр., квантавы гадзіннік, гл. таксама Метралогія), прылады для вымярэння часу (гадзіннік, гадзіннік астранамічны), вуглавых і лінейных скарасцей і паскарэнняў (акселерометры, тахометры, спідометры), радыётэхн. вымяральныя прылады (асцылограф, частатамер і інш.), спец. прылады (авіяцыйныя, карабельныя і інш., напр., вышынямер, гіракомпас). Пашыраны і камбінаваныя вымяральныя прылады, якія вымяраюць некалькі велічынь (ампервальтомметр і інш.). Паводле формы атрымання інфармацыі вымяральныя прылады бываюць аналагавыя (значэнне велічыні паказваецца на шкале) і лічбавыя (на спец. індыкатары), з візуальным адлічваннем і самапісныя (барографы, тэрмографы, індыкатары ціску, лічбавыя друкавальныя хранографы). Пашыраны інтэгральныя вымяральныя прылады, якія даюць сумарнае значэнне велічыні за пэўны час (напр., лічыльнікі электрычныя, расхадамеры). Адрозніваюць таксама вымяральныя прылады аўтаматычныя і ручнога кіравання. Найб. пашыраны вымяральныя прылады прамога дзеяння (прамога пераўтварэння) і прылады параўнання, у якіх велічыня, што вымяраецца, параўноўваецца з адпаведнай мерай (вагі, патэнцыёметры).

У.М.Сацута.

т. 4, с. 315

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАХАВА́ННЯ ЗАКО́НЫ,

фізічныя заканамернасці, якія ўстанаўліваюць пастаянства ў часе пэўных велічынь, што характарызуюць фіз. сістэму ў працэсе змены яе стану; найб. фундаментальныя заканамернасці прыроды, якія вылучаюць самыя істотныя характарыстыкі фіз. сістэм і працэсаў. Асаблівае значэнне З.з. звязана з тым, што дакладныя дынамічныя законы, якія поўнасцю апісваюць фіз. сістэмы, часта вельмі складаныя ці невядомыя. У гэтых выпадках З.з. даюць магчымасць зрабіць істотныя вывады пра паводзіны і ўласцівасці сістэмы без рашэння ўраўненняў руху.

З.з. для энергіі, імпульсу, моманту імпульсу і эл. зараду выконваюцца ў кожнай ізаляванай сістэме (універсальныя законы прыроды). Пасля стварэння адноснасці тэорыі страціў сваё абсалютнае значэнне З.з. масы (гл. Дэфект мас)\ З.з. энергіі і імпульсу аб’яднаны ў агульны З.з. энергіі—імпульсу; удакладнена фармулёўка З.з. поўнага моманту імпульсу (з улікам спіна). Асабліва важная роля З.з. у тэорыі элементарных часціц, дзе ёсць шэраг абсалютных (для электрычнага, барыённага і лептоннага зарадаў) і прыблізных (для ізатапічнага спіна, дзіўнасці і інш.) З.з., якія выконваюць толькі пры некат. умовах. Напр., дзіўнасць захоўваецца ў моцных, але парушаецца ў слабых узаемадзеяннях (гл. Адроны, Барыёны, Лептоны, Узаемадзеянні элементарных часціц). З.з. ў тэорыі элементарных часціц — асн. сродак вызначэння магчымых рэакцый паміж часціцамі. Існуе глыбокая сувязь паміж З.з. і сіметрыяй фіз. сістэм (гл. Сіметрыя, Нётэр тэарэма). Наяўнасць характэрнай для кожнага тыпу фундаментальных узаемадзеянняў дынамічнай (калібровачнай) сіметрыі прыводзіць да З.з. сілавых (дынамічных) зарадаў, якія вызначаюць здольнасць элементарных часціц да адпаведнага ўзаемадзеяння. З.з. эл. зараду, слабых ізатапічнага спіна і гіперзараду, каляровых (моцных) зарадаў выкарыстоўваюцца пры пабудове палявых (калібровачных) тэорый электрамагнітнага, электраслабага і моцнага ўзаемадзеянняў адпаведна. У квантавай тэорыі поля ўведзены спецыфічныя З.з. прасторавай, часавай і зарадавай цотнасцей, што вызначаюць уласцівасці тэорыі адносна пераўтварэнняў адпаведнай дыскрэтнай сіметрыі (гл. Людэрса—Паўлі тэарэма).

Літ.:

Фейнман Р. Характер физических законов: Пер. с англ. М., 1968;

Богуш А.А. Очерки по истории физики микромира. Мн., 1990.

Ф.І.Фёдараў, А.А.Богуш.

т. 7, с. 9

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)