АДЗІ́НАЯ ЭНЕРГЕТЫ́ЧНАЯ СІСТЭ́МА,
энергетычныя аб’екты (электрастанцыі, падстанцыі, лініі электраперадач, цеплавыя сеткі, кацельныя), звязаныя агульным рэжымам у бесперапынным працэсе вытв-сці, ператварэння і размеркавання эл. і цеплавой энергіі. На тэр. б. СССР фарміраванне пачалося ў 1956—59. Да пач. 1990-х г. завершана падключэнне большай ч. аб’яднанай электраэнергетычнай сістэмы да агульнай сеткі ліній электраперадач напружаннем 220, 330, 500 і 750 кВ. У 1991 адзіная энергетычная сістэма аб’ядноўвала 92 энергет. сістэмы (выраблена каля 1490 млрд. кВт∙гадз электраэнергіі). На пач. 1992 магутнасць 790 электрастанцый адзінай энергетычнай сістэмы складала больш за 288 тыс. МВт. Беларуская энергетычная сістэма тэхналагічна ўваходзіць у паўн.-зах. рэгіён адзінай энергетычнай сістэмы б. СССР і звязана лініямі з Літоўскай, Смаленскай, Пскоўскай, Бранскай і Украінскай энергасістэмамі.
А.У.Вержбаловіч.
т. 1, с. 108
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕРГУ́К,
пругкія хвалі з частатой 109—1013 Гц. Па фізічнай прыродзе не адрозніваецца ад ультрагуку (2·104—109 Гц). Існуе гіпергук прыродны (цеплавыя ваганні крышталічнай рашоткі) і штучны (генерыруецца пры дапамозе спец. выпрамяняльнікаў; гл. П’езаэлектрычнасць, Магнітастрыкцыя).
Пругкія хвалі распаўсюджваюцца ў асяроддзі, калі іх даўжыні большыя за даўжыню свабоднага прабегу малекул у газах ці міжатамных адлегласцей у вадкіх і цвёрдых целах. Таму ў газах, у т. л. ў паветры, пры нармальных умовах гіпергук не распаўсюджваецца, у вадкасцях хутка затухае; параўнальна добрыя праваднікі гіпергуку — монакрышталі пры нізкіх т-рах. Гіпергук выкарыстоўваюць для даследавання стану рэчыва, асабліва ў фізіцы цвёрдага цела, для стварэння акустычных ліній затрымкі ў ЗВЧ дыяпазоне і інш. прылад акустаэлектронікі і акустаоптыкі.
т. 5, с. 256
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАКУУММЕ́ТР,
прылада для вымярэння ціску газаў, ніжэйшага за атмасферны. Падзяляюцца на абсалютныя (напр., вадкасныя, дэфармацыйныя, кампрэсійныя) і адносныя (радыеметрычныя, цеплавыя, іанізацыйныя). Кожны тып вакуумметра разлічаны на вымярэнні ў пэўных межах ціску. Выкарыстоўваюцца ў энергетыцы, электроніцы, вакуумнай металургіі, хім. і харч. прам-сці.
Абсалютныя вакуумметры вымяраюць ціск непасрэдна; іх паказанні не залежаць ад роду газу. У вадкасных вакуумметрах вымераны ціск (рознасць ціскаў) ураўнаважваецца ціскам слупа вадкасці. Дзеянне кампрэсійных вакуумметраў заснавана на Бойля—Марыёта законе У рэфармацыйных вакуумметрах ціск вымяраецца па дэфармацыі адчувальнага элемента (сільфон, мембрана і інш.). Адносныя вакуумметры вымяраюць фіз. велічыні, залежныя ад ціску газу; градуіруюцца па абсалютных узорных вакуумметрах; іх паказанні залежаць ад роду газу. Прынцып дзеяння радыеметрычных вакуумметрах заснаваны на радыеметрычным эфекце, цеплавых — на цеплаабмене напаленай металічнай ніці, іанізацыйных — на вымярэнні сілы іоннага току; крыніца іанізацыі — паток электронаў ад напаленага катода, α- або β-часціцы.
М.І.Дудо.
т. 3, с. 465
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВА́ДКАСЦЬ,
агрэгатны стан рэчыва, прамежкавы паміж цвёрдым і газападобным. Фіз. ўласцівасці і структура (блізкі парадак) залежаць ад хім. прыроды часцінак вадкасці і характару ўзаемадзеяння паміж імі. Спалучае ўласцівасці цвёрдага (малая сціскальнасць, свабодная паверхня, трываласць на разрыў пры ўсебаковым расцягненні і інш.) і газападобнага (зменлівасць формы) рэчываў. Існуе пры т-рах у інтэрвале ад т-ры крышталізацыі да т-ры кіпення і цісках большых, чым у трайным пункце.
Цеплавы рух малекул вадкасці складаецца з ваганняў каля стану раўнавагі і рэдкіх пераскокаў з аднаго раўнаважнага стану ў іншы, чым абумоўлена асн. ўласцівасць вадкасці — цякучасць. Адрозненні паміж вадкасцю і газам знікаюць у крытычным стане; пры больш высокіх т-рах вадкасць не існуе ні пры якім ціску. Некат. рэчывы маюць некалькі вадкіх фаз (напр., квантавыя вадкасці, вадкія крышталі). Нераўнаважныя цеплавыя і мех. працэсы ў вадкасці. (напр., дыфузія, цеплаправоднасць, электраправоднасць і інш.) вывучаюцца метадамі тэрмадынамікі неабарачальных працэсаў; мех. рух вадкасці як суцэльнага асяроддзя вывучае гідрадынаміка, няньютанавы (структурна-вязкасныя) вадкасці — рэалогія.
Літ.:
Крокстон К. Фиизика жидкого состояния: Пер. с англ. М., 1978;
Динамические свойства твердых тел и жидкостей: Пер. с англ. М., 1980.
В.І.Навуменка.
т. 3, с. 438
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АГРАФІ́ЗІКА
(ад агра... + фізіка),
агранамічная фізіка, навука пра фіз. працэсы ў глебе і раслінах, выкарыстанне метадаў і сродкаў рэгулявання фіз. умоў жыцця с.-г. культур для павышэння іх прадукцыйнасці. Сфарміравалася ў пач. 20 ст. Станаўленне аграфізікі звязана з імёнамі Э.Расела, А.Ф.Іофе, Дз.М.Пранішнікава, М.А.Качынскага і інш. Развіваецца на аснове аграноміі і фізікі. Уключае: фізіку глебы і прыземнага слоя паветра, святлокультуру раслін, спосабы і сродкі рэгулявання вонкавых умоў жыцця раслін. На Беларусі праблемы аграфізікі вывучаюцца ў н.-д. ін-тах глебазнаўства і аграхіміі, меліярацыі і лугаводства, Бел. тэхнал. ун-це, Ін-це эксперым. батанікі АН Беларусі. Даследуюцца водна-фіз. і цеплавыя ўласцівасці, водна-паветраны рэжым, водны і цеплавы балансы глебаў, вільгацезабяспечанасць с.-г. і лясных культур, змена фактараў урадлівасці глебы пад уплывам меліярацыі і інтэнсіўнага земляробства, спосабы аптымізацыі фіз. умоў вырошчвання с.-г. культур, уздзеянне ўмоў навакольнага асяроддзя на працэс фотасінтэзу (С.Г.Скарапанаў, В.Ф.Шабека, К.П.Лундзін, Р.І.Афанасік, Л.П.Смаляк, У.Л.Калер, М.І.Афанасьеў). Вынікі даследаванняў з’яўляюцца тэарэт. асновай гідратэхн. меліярацыі і апрацоўкі глебаў, павышэння прадукцыйнасці раслін, выкарыстоўваюцца ў агратэхніцы.
Літ.:
Растворова О.Г. Физика почв. Л., 1983;
Агрофизические свойства почв и их регулирование в условиях интенсивного земледелия. Саранск, 1989.
М.І.Афанасьеў.
т. 1, с. 85
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГЛЫБІ́ННЫ РАЗЛО́М,
разнавіднасць разрыўнога парушэння зямной кары. Уяўляе сабой працяглую на сотні і тысячы кіламетраў адносна вузкую (ад некалькіх сотняў метраў да дзесяткаў кіламетраў) і глыбокую зону рухомага сучлянення буйных блокаў, якое пранікае ў падысподнюю частку верхняй мантыі Зямлі.
Паводле сейсмічных паказчыкаў адрозніваюць разломы: звышглыбінныя (да 400—700 км), глыбокія (да 100—300 км) і ўласна зямной кары. Працягласць іх развіцця розная — да сотняў мільёнаў і больш за мільярд гадоў. Глыбінныя разломы адметныя радамі разнастайных расколін, зон крышэння, рассланцавання і дробнай прыразломнай складкавасцю. Маюць верт., гарыз. і нахіленыя асновы. Глыбінныя разломы падзяляюць зямную кару на асобныя буйныя блокі або глыбы, часта з’яўляюцца граніцамі асноўных тэктанічных элементаў літасферы. З глыбіннымі разломамі звязаны моцныя землетрасенні, павялічаныя цеплавыя патокі з зямных нетраў. Яны з’яўляюцца шляхамі пранікнення ў зямную кару магматычных руданосных і гідратэрмальных раствораў.
На Беларусі найб. выразныя глыбінныя разломы: Полацкі, Выжаўска-Мінскі, Стахоўска-Магілёўскі, Крычаўскі, Чачэрскі. Яны маюць вялікую працягласць і глыбіню, выцягнуты з ПдЗ на ПнУ, паралельныя адзін аднаму. Паміж імі размешчаны менш магутныя разломы зямной кары. У выніку тэр. разбіта на магутныя блокі, дзе верт. перамяшчэнне ўнутранай паверхні рухома-хвалевае. Характар паверхневых верт. зрухаў зямной паверхні вывучаецца з дапамогай геадэзічных назіранняў на геадынамічным палігоне.
А.А.Саламонаў.
т. 5, с. 307
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫМЯРА́ЛЬНЫ ПЕРАЎТВАРА́ЛЬНІК,
прыстасаванне, якое пераўтварае фіз. велічыню, што вымяраецца або рэгулюецца, у сігнал (звычайна электрычны) для далейшай перадачы, апрацоўкі ці рэгістрацыі. Адна з асн. частак сродкаў вымяральнай тэхнікі, сістэм аўтаматыкі і тэлемеханікі. Тэрмін «вымяральны пераўтваральнік» уведзены стандартам замест тэрміна «датчык».
Параметры, якія ўспрымаюцца вымяральным пераўтваральнікам, бываюць механічныя (намаганне, перамяшчэнне, скорасць, вібрацыя), гідраўлічныя і пнеўматычныя (ціск, расход), аптычныя (сіла святла), цеплавыя (т-ра), электрычныя (напружанне і ток), радыеактыўныя. Выходныя сігналы падзяляюцца на электрычныя і пнеўматычныя (часам гідраўлічныя), амплітудныя, часаімпульсныя, частотныя і фазавыя, аналагавыя (неперарыўныя) і лічбавыя (дыскрэтныя). Вымяральны пераўтваральнік складаецца з аднаго (напр., тэрмапара, тэнзометр) або з некалькіх элементарных пераўтваральнікаў, найважнейшы з якіх — адчувальны элемент. Пераўтваральнікі злучаюцца па каскаднай, дыферэнцыяльнай і кампенсацыйнай схемах. Найб. Пашыраны маштабныя і функцыянальныя вымяральныя пераўтваральнікі. Маштабныя (напр., дзялільнікі частаты і напружання, трансфарматары вымяральныя) мяняюць маштаб велічыні, якая вымяраецца, без змены яе фіз. прыроды. Гэтыя вымяральныя пераўтваральнікі пашыраюць межы вымярэнняў сродкамі вымяральнай тэхнікі. Функцыянальныя вымяральныя пераўтваральнікі (напр., тэрмарэзістары, фотаэлементы) пераўтвараюць велічыню той ці іншай фіз. прыроды ў функцыянальна звязаны з ёй сігнал (звычайна электрычны). Такімі вымяральнымі пераўтваральнікамі можна вымяраць разнастайныя неэл. велічыні. Асобны клас складаюць аперацыйныя вымяральныя пераўтваральнікі, якія выконваюць над велічынямі пэўныя матэм. аперацыі (інтэграванне, дыферэнцыраванне і інш.). Асн. характарыстыкі вымяральных пераўтваральнікаў: від функцыянальнай залежнасці паміж уваходнай і выходнай велічынямі, адчувальнасць і парог адчувальнасці, хібнасць.
У.М.Сацута.
т. 4, с. 315
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВАГА́ННІ КРЫШТАЛІ́ЧНАЙ РАШО́ТКІ,
узгодненыя зрушэнні атамаў крышталя каля становішчаў раўнавагі (вузлоў рашоткі). Характар ваганняў залежыць ад сіметрыі крышталёў, ліку атамаў у элементарнай ячэйцы, тыпу хім. сувязі, віду і канцэнтрацыі дэфектаў у крышталях. Амплітуда ваганняў павялічваецца з павышэннем тэмпературы крышталя. На цеплавыя ваганні могуць накладвацца ваганні, выкліканыя распаўсюджваннем у крышталі пругкіх хваляў, абумоўленых знешнім уздзеяннем.
У крышталі з N элементарных ячэек па υ атамаў у кожнай існуе 3υN-6 незалежных найпрасцейшых нармальных ваганняў, кожнае з якіх можна ўявіць у выглядзе дзвюх плоскіх пругкіх хваляў, што распаўсюджваюцца ў процілеглых напрамках. Гэтыя ваганні складаюцца з трох акустычных галін (ім адпавядаюць зрушэнні элементарнай ячэйкі як цэлага) і 3 (υ—1) аптычных (адпавядаюць зрушэнням атамаў унутры элементарнай ячэйкі). Пры пругкім характары міжатамнага ўзаемадзеяння вагальная энергія крышталя складаецца з энергій нармальных ваганняў, кожнае з якіх уцягвае ў рух усе атамы. Вагальную энергію крышталя можна разглядаць і як суму энергій фанонаў — квантаў энергіі пругкіх ваганняў. Квантавая прырода ваганняў крышталічнай рашоткі праяўляецца ў наяўнасці нулявых ваганняў атамаў пры Т = 0К. Ваганні крышталічнай рашоткі ўплываюць на электраправоднасць металаў і паўправаднікоў, на аптычныя ўласцівасці дыэлектрыкаў.
Літ.:
Анималу А. Квантовая теория кристаллических твердых тел: Пер. с англ. М., 1981;
Рейсленд Дж. Физика фононов: Пер. с англ. М., 1975;
Федоров Ф.И. Теория упругих волн в кристаллах. М., 1965.
М.А.Паклонскі.
т. 3, с. 428
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)