Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)
АПЕРА́НД (англ. operand) у вылічальнай тэхніцы, частка машыннай каманды, што вызначае аб’ект, над якім выконваецца аперацыя ў працэсе выканання зададзенай праграмы; аргумент аперацыі. Напр., аперандам арыфм. аперацый звычайна з’яўляюцца лікі: пры складанні — складнікі, пры множанні — сумножнікі.
т. 1, с. 423
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДВАРО́ТНЫ ЛІК,
лік, здабытак якога з дадзеным лікам роўны адзінцы. Два такія лікі наз. ўзаемна адваротнымі, напр. 5 і 1/5, 2/3 і 3/2 і г.д. Для кожнага ліку а, не роўнага 0, існуе адваротны лік 1/а.
т. 1, с. 98
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АДНАРО́ДНЫЯ КААРДЫНА́ТЫ пункта, прамой і г.д., каардынаты з уласцівасцю, што аб’ект, які яны вызначаюць, не мяняецца, калі ўсе каардынаты памножыць на адвольны лік.
Напр., аднародныя каардынаты пункта M на плоскасці могуць з’яўляцца лікі x, y, z, звязаныя суадносінамі
, дзе x і y — дэкартавы каардынаты пункта M. Лікі x′, y′, z′ будуць аднароднымі каардынатамі таго ж пункта M у выпадку, калі знойдзецца множнік λ, што , , .
Увядзенне аднародных каардынат дазваляе дадаць да пунктаў эўклідавай плоскасці пункты з трэцяй аднароднай каардынатай, роўнай нулю (т.зв.бесканечна аддаленыя пункты), што істотна для праектыўнай геаметрыі.
т. 1, с. 123
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АРА́БСКІЯ ЛІ́ЧБЫ,
назва дзесяці матэм. знакаў: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, з дапамогай якіх па дзесятковай сістэме лічэння запісваюцца любыя лікі. Узніклі ў Індыі (не пазней як у 5 ст.), у Еўропе вядомыя з 10—13 ст. з араб. крыніц (адкуль і назва).
т. 1, с. 447
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІПЕРКАМПЛЕ́КСНЫ ЛІК,
абагульненне паняцця комплекснага ліку і пашырэнне яго на мнагамерную прастору. Уведзены ў 19 ст. пры спробах пабудаваць лікі ў мнагамернай вектарнай прасторы, якія б адыгрывалі ў ёй такую ж ролю, што і камплексныя лікі на плоскасці. Арыфм. дзеянні над гіперкамплексным лікам выражаюць некаторыя геам. працэсы ў мнагамернай прасторы ці даюць колькаснае апісанне якога-н. фіз. закона.
Гіперкамплексны лік з’яўляецца лінейнай камбінацыяй (з сапраўднымі каэфіцыентамі) некат. сістэмы базісных адзінак (гл. Базіс). Складанне і адыманне гіперкамплекснага ліку вызначана адназначна. Множанне аднаго гіперкамплекснага ліку на другі патрабуе вызначэння здабыткаў базісных адзінак, якія б захоўвалі ўсе правілы звычайнай арыфметыкі; такое магчыма толькі для сапраўдных і камплексных лікаў; у астатніх выпадках неабходна адмовіцца ад выканання таго ці іншага правіла, напр. адназначнасці дзялення, камутатыўнасці множання. Гл. таксама Кватэрніёны.
т. 5, с. 256
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДЗЯЛЕ́ННЕ,
арыфметычнае дзеянне, адваротнае множанню. Падзяліць лік a (дзеліва) на b (дзельнік адрозны ад нуля) — значыць знайсці такі лік x (дзель), што здабытак bx = a (або xb = a). Для абазначэння Дз. выкарыстоўваюць знакі двукроп’я (a:b), гарыз. () або нахільнай (a/b) рысы.
Для рацыянальных лікаў (цэлых, дробных і нуля) Дз. адназначнае і заўсёды магчымае (акрамя Дз. на нуль, што немагчыма). У межах цэлых лікаў — адназначнае, але не заўсёды магчымае, напр., 6 дзеліцца на 2 і 3, але не дзеліцца на 5. Абагульненнем звычайнага Дз. з’яўляецца Дз. з астачай. Падзяліць цэлыя неадмоўныя лікі a на b — знайсці такія цэлыя неадмоўныя лікі x і y, якія задавальнялі б патрабаванні a = bx + y, y < b, дзе x — няпоўная дзель (пры y ≠ 0) ці дзель (пры y = 0); y — астача. Гл. таксама Падзельнасць.
т. 6, с. 138
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДАСКАНА́ЛЫ ЛІК,
цэлы дадатны лік, роўны суме сваіх правільных (меншых за гэты лік) дзельнікаў. Напр., 6 =1+2+3; 28 = 1+2+4+7+14. Цотныя Д.л. вылічваюцца па формуле 2p−1∙(2p−1) (Эўклід; 3 ст. да н.э.) пры ўмове, што лікі р і (2p-1) простыя; ніводнага няцотнага Д.л. не знойдзена.
т. 6, с. 60
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АБСАЛЮ́ТНАЯ ВЕЛІЧЫНЯ́ рэчаіснага ліку, велічыня, роўная гэтаму ліку, калі ён дадатны, роўная процілегламу ліку, калі ён адмоўны, і роўная нулю, калі лік роўны нулю. Абсалютная велічыня ліку a абазначаецца (a). Напр., (+2) = (-2) = 2, (0) = 0. Абсалютная велічыня (або модуль) комплекснага ліку a + bi, дзе a і b — рэчаісныя лікі, роўныя
. Напр., (i) = (-i) = 1, (3 + 4i) = 5.
т. 1, с. 43
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАРМАНІ́ЧНЫ РАД,
лікавы рад 1 + 1/2 + 1/3 + ... +1/n + ..., члены якога — лікі, адваротныя лікам натуральнага рада. Разбежнасць гарманічнага рада даказана Г.В.Лейбніцам (1673); асімптатычную формулу сумы першых яго n членаў атрымаў Л.Эйлер (1740); Sn=С+ ln n+εn, дзе С = 0,57721566... — пастаянная Эйлера; εn → 0 пры n → ∞. Кожны член гарманічнага рада (пачынаючы з 2-га) ёсць сярэдняе гарманічнае (гл. Сярэдняе) сваіх суседзяў (адсюль назва).
т. 5, с. 63
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)