Алгебра логікі 1/235; 3/193, 194; 4/588; 6/239; 7/83; 10/542

Беларуская Савецкая Энцыклапедыя (1969—76, паказальнікі; правапіс да 2008 г., часткова)

БУ́ЛЕВА А́ЛГЕБРА,

апарат сімвалічнай логікі; сукупнасць аб’ектаў з аперацыямі алгебры логікі, якія падпарадкаваны пэўным аксіёмам. Прапанавана Дж.Булем для аналізу рэлейных схем. Знайшла дастасаванне ў тапалогіі, тэорыі імавернасцей і інш. раздзелах матэматыкі. У аксіёмах булева алгебры адлюстравана аналогія паміж паняццямі «мноства», «падзея», «выказванне». Асн. паняцці булева алгебры: логікавая (булева) функцыя, элементарная логікавая функцыя, функцыйна поўная сістэма логікавых функцый, мінімізацыя булевых функцый.

Логікавая функцыя n булевых аргументаў прымае значэнні 0 і 1, азначаецца праўдзіваснай табліцай або аналітычнай залежнасцю ад элементарных логікавых функцый. Вызначана 16 элементарных функцый: кан’юнкцыі (логікавае множанне; аперацыя «І»), дыз’юнкцыі (складанне; «АБО»), інверсіі (адмаўленне; «НЕ»), эквівалентнасці (тоеснасць), складання па модулі 2 (выключальнае «АБО») і інш. Функцыйна поўная сістэма логікавых функцый — сукупнасць функцый, дастатковая для выражэння логікавай функцыі любой складанасці, напр., аперацыя Пірса, аперацыя Шэфера. Мінімізацыя логікавых функцый праводзіцца з мэтай упарадкавання і спрашчэння складаных функцый з дапамогай аксіём булева алгебры, картаў Карно, метадаў Квайна і Мак-Класкі і інш.

Булева алгебра з’яўляецца логікавай асновай функцыянальнай арганізацыі лічбавых ЭВМ; элементарныя логікавыя функцыі рэалізаваны ў спец. інтэгральных мікрасхемах для ЭВМ.

Літ.:

Янсен Й. Курс цифровой электроники: Пер. с голланд.: В 4 т. Т. 1. М., 1987.

А.С.Кабайла.

т. 3, с. 330

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ЛГЕБРА ЛО́ГІКІ,

раздзел матэматычнай логікі, які вывучае логікавыя аперацыі над выказваннямі. Заснавальнік — англ. матэматык Дж.Буль (1815—64). Алгебра логікі разглядае выказванні толькі з пункту гледжання іх праўдзівасці (пазначаюць лічбамі 1 — праўдзівасць і 0 — ілжывасць). Логікавыя аперацыі над выказваннямі даюць магчымасць будаваць новыя выказванні. Праўдзіваснае значэнне такога выказвання A (a1,..., an), атрыманага пры дапамозе логікавых аперацый з прасцейшых выказванняў a1, ..., an, адназначна выяўляецца праўдзіваснымі значэннямі зыходных выказванняў a1,..., an. Таму кожнаму такому выказванню A (a1, ..., an) адпавядае n-ме́сцавая функцыя, якая прымае значэнні 0,1, аргументы яе таксама прымаюць гэтыя значэнні. Такія функцыі наз. функцыямі алгебры логікі, ці булевымі, функцыямі. Яны могуць быць зададзеныя з дапамогай праўдзівасных табліц, якія маюць 2​n радкоў.

Логікавыя аперацыі: кан’юнкцыя &, дыз’юнкцыя ⋁, адмаўленне ¬, імплікацыя ⇒, эквіваленцыя ⇔ — могуць быць зададзеныя з дапамогай праўдзівасных табліц. Замест ¬x часам пішуць x̅. Ужываецца заданне функцый алгебры логікі і з дапамогай формул у мове, у якой ёсць пераменныя x, y, z... і сімвалы некаторых канкрэтных функцый. Найбольш ужывальная мова, якая мае логікавыя сімвалы &, ⋁, ¬, ⇒, ⇔. Кожнай формуле гэтай мовы адпавядае нейкая функцыя алгебры логікі, значэнне (0,1) якой пры дадзеных значэннях пераменных (0,1) знаходзіцца ў адпаведнасці з аперацыямі, з якіх пабудавана дадзеная формула. Такая функцыя рэалізуе дадзеную формулу. Формулы A і B наз. роўнымі (раўназначнымі), калі адпаведныя ім функцыі роўныя, г.зн. калі супадаюць іх праўдзівасныя табліцы. Азначэнне A=B ці A≡B, A~B, калі кажуць пра іх раўназначнасць. Важную ролю ў алгебры логікі маюць роўнасці, якія задаюць булеву алгебру.

Кожная функцыя алгебры логікі можа быць рэалізаваная нейкай формулай мовы з логікавымі сімваламі &, ⋁, ¬. Асаблівую ролю ў алгебры логікі адыгрываюць дыз’юнктыўныя і кан’юнктыўныя нармальныя формы, якія маюць вял. прыкладное значэнне. Сістэма функцый Ф. наз. функцыянальна поўнай, калі адвольная функцыя алгебры логікі можа быць рэалізаваная формулай, якая мае толькі сімвалы функцый з Ф. Напр., сістэмы функцый {&, ⋁, ¬}, {&, ¬}, {⋁, ¬}, {⇒, ¬}, {x | у}, {x ↓ у} функцыянальна поўныя (тут x | y = x & y_ , x y = x y , якія наз. штрыхам Шэфера і стрэлкай Пірса адпаведна).

Алгебра логікі мае шмат дадаткаў, асабліва ў тэорыі эл. схем.

Р.Т.Вальвачоў.

т. 1, с. 234

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАДАЯ́Н Аляксандр Арсенавіч

(н. 24.5.1925, с. Хот Гарыскага р-на, Арменія),

бел. матэматык. Канд. фізіка-матэм. н. (1965), праф. (1983). Скончыў Азерб. ун-т (1955). З 1966 у Бел. пед. ун-це. Навук. працы па тэнзарным аналізе і рыманавай геаметрыі. Аўтар навуч. дапаможнікаў для тэхнікумаў і ВНУ.

Тв.:

Алгебра и геометрия. Мн., 1989 (разам з У.А.Дударэнкам);

Математический анализ. Мн., 1990 (з ім жа).

т. 6, с. 6

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАЗЫЛЬЯ́НСКІЯ ШКО́ЛЫ,

навучальныя ўстановы ў 17 — 1-й пал. 19 ст., якія ствараліся, утрымліваліся і кіраваліся манаскім ордэнам базыльянаў. Дзейнічалі на Беларусі, Украіне, у Літве, Латвіі і Польшчы. Папа Павел V 2.12.1615 зацвердзіў базыльянскія школы і дазволіў весці ў іх навучанне свецкай моладзі. На Беларусі першыя школы ўзніклі да 1637 у Мінску, Навагрудку, мяст. Баруны, Жыровічы, Чарэя і інш. У базыльянскіх школах вучылася моладзь розных веравызнанняў. Настаўнікаў для школ рыхтавалі ў езуіцкіх калегіумах, Віленскай акадэміі (універсітэце), замежных універсітэтах. Выкладаліся: грэч., лац., царкоўнаслав., польск., рус., ням., франц. мовы, метафізіка, рыторыка, логіка, паэтыка, права, асновы хрысц. веравучэння і абраднасці, гісторыя агульная і Рэчы Паспалітай, з 19 ст. — гісторыя Рас. імперыі, фіз. і паліт. геаграфія, арыфметыка, алгебра, геаметрыя, фізіка, астраномія, заалогія. У 1820—30-я г. базыльянскія школы зачынены ўрадам Рас. імперыі або пераўтвораны ў семінарыі і духоўныя праваслаўныя школы.

т. 2, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫМІЗА́ЦЫІ ЗАДА́ЧЫ І МЕ́ТАДЫ,

раздзел матэматыкі, у якім вывучаюцца ўласцівасці розных класаў задач, што грунтуюцца на выбары сярод некаторага мноства найлепшага з дазволеных рашэнняў (аптымізацыйныя задачы). Кожная задача ўключае фармальнае апісанне мноства рашэнняў і крытэрыяў аптымальнасці. У залежнасці ад інфармаванасці асобы, што прымае рашэнне, задачы бываюць дэтэрмінаваныя (адзіны інфарм. стан), нявызначаныя (мноства інфарм. станаў; звычайна разглядаюцца ў гульняў тэорыі) і стахастычныя (кожны з мноства інфарм. станаў мае пэўную імавернасць); у залежнасці ад уласцівасцяў мноства рашэнняў і крытэрыяў аптымальнасці выбару — аднакрытэрыяльныя (патрабаванні мінімізацыі або максімізацыі адной мэтавай функцыі) і многакрытэрыяльныя (некалькіх мэтавых функцый). Могуць быць зададзены і спецыфічныя суадносіны перавагі адных рашэнняў перад інш. магчымымі. Матэм. асновай распрацоўкі лікавых метадаў аптымізацыі з’яўляюцца матэм. аналіз, лінейная алгебра, тэорыя імавернасцяў і інш. Для рашэнняў аптымізацыйных задач распрацаваны шэраг пакетаў праграм.

Літ.:

Габасов Р., Кириллова Ф.М. Методы оптимизации. 2 изд. Мн., 1981;

Васильев Ф.П. Численные методы решения экстремальных задач. 2 изд. М., 1988;

Карманов В.Г. Математическое программирование. 3 изд. М., 1986.

В.С.Танаеў.

т. 1, с. 436

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БАБРУ́ЙСКІЯ ГІМНА́ЗІІ.

Існавалі ў Бабруйску ў 1902—20.

Мужчынская гімназія засн. ў 1823 як 3-класнае пав. вучылішча, пераўтворанае ў 1865 у 4-класную прагімназію, з 1902 — 8-класная гімназія з падрыхтоўчым класам. У 1908/09 навуч. г. 365 навучэнцаў. Выкладаліся: Закон Божы, рус., польск., франц., ням., старажытныя мовы, матэматыка, фізіка, гісторыя, заканазнаўства, прыродазнаўства, маляванне, чыстапісанне, спевы, музыка.

Жаночая Аляксееўская гімназія адкрыта ў 1906 як 7-класная, у 1907/08 навуч. г. ўведзены 8-ы пед. і падрыхтоўчы класы. У 1908/09 навуч. г. 393 выхаванкі. Выкладаліся: Закон Божы, рус. мова, матэматыка, фізіка, прыродазнаўства, геаграфія, чыстапісанне, маляванне, рукадзелле.

Мужчынская прыватная гімназія адкрыта ў 1907 у складзе 1—5-га і падрыхтоўчага класаў. 264 навучэнцы. Выкладаліся: Закон Божы, рус., франц., ням., лац. мовы, матэматыка, астраномія, чыстапісанне, маляванне, гімнастыка, музыка.

Жаночая прыватная гімназія рэарганізавана ў 1910 з прыватнай прагімназіі М.М.Ільінскай. У 1912/13 навуч. г. 294 навучэнкі. Выкладаліся: Закон Божы, рус., франц., ням. мовы, гісторыя, славеснасць, прыродазнаўства, фізіка, арыфметыка, алгебра, геаметрыя, маляванне, чыстапісанне.

У 1919—20 гімназіі і прагімназіі рэарганізаваны ў адзіныя працоўныя школы 1-й і 2-й ступеняў.

Г.Р.Сянькевіч.

т. 2, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ ГЕАМЕ́ТРЫЯ,

раздзел геаметрыі, у якім уласцівасці геаметрычных аб’ектаў (пунктаў, ліній, паверхняў) даследуюцца сродкамі алгебры на падставе метаду каардынат (праз вывучэнне ўласцівасцяў ураўненняў, графікамі якіх гэтыя аб’екты з’яўляюцца).

Узнікненне метаду каардынат звязана з развіццём у 17 ст. астраноміі, механікі, тэхнікі. Асновы аналітычнай геаметрыі заклалі Р.Дэкарт (1637) і П.Ферма (1629); далейшае развіццё звязана з працамі Г.Лейбніца, І.Ньютана, Л.Эйлера, Ж.Лагранжа, Г.Монжа, С.Лакруа і інш. Асн. задача аналітычнай геаметрыі на плоскасці — даследаванне ліній 1-га (прамыя) і 2-га (эліпс, гіпербала, парабала) парадку, якія ў дэкартавых каардынатах вызначаюцца алг. ўраўненнямі адпаведна 1-й і 2-й ступені. Аналітычная геаметрыя ў прасторы даследуе паверхні 1-га (плоскасці) і 2-га (эліпсоід, гіпербалоід, парабалоід, конус, цыліндр) парадку, якія вызначаюцца алг. ўраўненнямі адносна дэкартавых каардынат адпаведна 1-й і 2-й ступені.

Метад даследавання і класіфікацый ліній і паверхняў прадугледжвае адшуканне такой прамавугольнай сістэмы каардынат, у якой адпаведнае ўраўненне набывае найб. просты выгляд. Метадамі аналітычнай геаметрыі карыстаюцца ў матэматыцы, фізіцы, механіцы, тэхніцы і інш. На Беларусі значны ўклад у развіццё аналітычнай геаметрыі зрабілі У.К.Дыдырка («Цыркулярныя крывыя 3-га парадку» — 1-я на Беларусі матэм. манаграфія, 1928) і І.К.Богаяўленскі («Аналітычная геаметрыя» — 1-ы беларускамоўны падручнік па вышэйшай матэматыцы, 1932).

Літ.:

Тышкевич Р.И., Феденко А.С. Линейная алгебра и аналитическая геометрия. 2 изд. Мн., 1976.

А.А.Гусак.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b вектараў a і b — вектар, праведзены з пачатку a да канца b, калі канец a і пачатак b супадаюць. Складанне вектараў мае ўласцівасці: a + b = b + a ; ( a + b ) + c = a + ( b + c ) ; a + 0 = a ; a + (−a) = 0 ; дзе 0 — нулявы вектар, a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць ab вектараў a і b — вектар x такі, што x + b = a ; рознасць ab ёсць вектар, які злучае канец вектара b з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α a | і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a=0, то α a = 0. Уласцівасці множання вектара на лік: α ( a + b )) = αa + αb ; ( a + b )) α = a α + b α ; α ( β a ) = ( α β ) a ; 1 a = a . Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗНА́КІ МАТЭМАТЫ́ЧНЫЯ,

умоўныя абазначэнні (сімвалы), якімі карыстаюцца для запісу матэм. паняццяў, суадносін, выкладак і ніш. Напр., выраз «лік тры большы за лік два» з дапамогай З.м. запісваецца як 3 &gt; 2.

Развіццё матэм. сімволікі цесна звязана з агульным развіццём паняццяў і метадаў матэматыкі. Першымі З.м. былі лічбы — знакі для абазначэння лікаў; мяркуюць, што яны папярэднічалі ўзнікненню пісьменнасці. З.м. для абазначэння адвольных велічынь з’явіліся 5—4 ст. да н.э. ў Грэцыі. Напр., плошчы, аб’ёмы, вуглы адлюстроўваліся адрэзкамі, а здабыткі велічынь — прамавугольнікамі, пабудаванымі на такіх адрэзках. У «Асновах» Эўкліда (3 ст. да н.э.) велічыні абазначаюцца дзвюма літарамі — пачатковай і канцавой літарамі адпаведнага адрэзка, а часам і адной. Пачаткі літарнага абазначэння і злічэння ўзніклі ў познаэліністычную эпоху (Дыяфант; верагодна 3 ст.) пры вызваленні алгебры ад геам. формы. Сучасная алг. сімволіка створана ў 14—17 ст.; яе развіццё і ўдасканаленне спрыяла ўзнікненню новых раздзелаў матэматыкі (гл. напр., Аперацыйнае злічэнне, Варыяцыйнае злічэнне, Тэнзарнае злічэнне) і матэм. логікі (Алгебра логікі).

А.А.Гусак.

Асноўныя матэматычныя знакі
Знак Значэнне Кім і калі ўведзены
Знакі індывідуальных аперацый адносін, аб’ектаў
+ складанне Я.Відман, 1489
адніманне
× множанне У.Оўтрэд, 1631
множанне Г.Лейбніц, 1698
: дзяленне Г.Лейбніц, 1684
an ступень Р.Дэкарт, 1637
na корань (радыкал) А.Жырар, 1629
log лагарыфм Б.Кавальеры, 1632
sin, cos сінус, косінус Л.Эйлер, 1748
tg тангенс Л.Эйлер, 1753
dx, d​2x, ... дыферэнцыял Г.Лейбніц, 1675
y   dxy інтэграл
lim ліміт У.Гамільтан, 1853
= роўнасць Р.Рэкард, 1557
>< больш, менш Т.Гарыёт, 1631
паралельнасць У.Оўгрэд, 1677
бесканечнасць Дж.Валіс, 1655
e аснова натуральных лагарыфмаў Л.Эйлер, 1736
π адносіны даўжыні акружнасці да яе дыяметра
i уяўная адзінка −1 Л.Эйлер, 1777
i, j, k адзінкавыя вектары У.Гамільтан, 1853
f(x) Знакі пераменных аперацый і аб’ектаў функцыя Л.Эйлер, 1734
x, y, z невядомыя (пераменныя) Р.Дэкарт, 1637
a, b, c адвольныя пастаянныя
r вектар А.Кашы, 1853

т. 7, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)