КУ́ПЕРА ЭФЕ́КТ,

утварэнне звязаных пар часціц у выраджанай сістэме ферміёнаў. Вядзе да звышцякучасці часціц, якая для зараджаных часціц выяўляецца як звышправоднасць. Прадказаны ў 1956 Л.Н.Куперам. Пакладзены ў аснову сучаснай мікраскапічнай тэорыі звышправоднасці.

Паводле тэорыі Купера, ферміёны з процілегла накіраванымі імпульсамі пры адсутнасці знешніх палёў могуць аб’ядноўвацца ў пары (купераўскія пары) з-за ўзаемадзеяння шляхам абмену віртуальнымі фанонамі, якое мае характар прыцяжэння. Купераўскія пары маюць цэлалікавы спін і з’яўляюцца базонамі, што не абмяжоўвае лік часціц у пэўным энергетычным стане. Малая велічыня энергіі сувязі электронаў у парах абумоўлівае існаванне нізкатэмпературнай звышправоднасці металаў і звышцякучасці вадкага гелію-3.

Л.І.Камароў.

т. 9, с. 35

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛАПА́ТАЧНАЯ МАШЫ́НА, лопасцевая машына,

механічная канструкцыя для пераўтварэння энергіі патоку вадкасці або газу ў энергію вярчальнага вала (гідраўлічная турбіна, газавая турбіна) ці наадварот (цэнтрабежная або восевая лопасцевая помпа, вентылятар).

Асн. рабочы орган Л.м. — рабочае кола, якое складаецца з лапатак, замацаваных на ўтулцы. Л.м. бываюць: адна- і шматступенныя; актыўныя і рэактыўныя (напр., актыўная турбіна, рэактыўная турбіна); восевыя, радыяльна-восевыя (дыяганальныя) і радыяльныя. Прынцып Л.м. вядомы са старажытнасці (паравая турбіна Герона Александрыйскага, рымскія гідраўл. турбіны), здаўна выкарыстоўваліся вадзяныя колы, ветрарухавікі. У канцы 19 ст. створаны восевы кампрэсар. Тэорыю Л.м. распрацоўвалі Л.Эйлер, М.Я.Жукоўскі i С.А.Чаплыгін.

т. 9, с. 131

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМ

(ад грэч. atomos непадзельны),

часціца рэчыва, найменшая частка хім. элемента, якая з’яўляецца носьбітам яго ўласцівасцяў. Кожнаму элементу адпавядае пэўны род атама, якія абазначаюцца сімвалам хім. элемента і існуюць у свабодным стане або ў злучэнні з інш. атамамі, у складзе малекул. Разнастайнасць хім. злучэнняў абумоўлена рознымі спалучэннямі атамаў у малекулах. Фіз. і хім. ўласцівасці свабоднага атама вызначаюцца яго будовай. Атам мае дадатна зараджанае цэнтр. атамнае ядро і адмоўна зараджаныя электроны і падпарадкоўваецца законам квантавай механікі.

Асн. характарыстыка атама, што абумоўлівае яго прыналежнасць да пэўнага элемента, — зарад ядра, роўны +Ze, дзе Z = 1, 2, 3, ... — атамны нумар элемента, e — элементарны эл. зарад. Ядро з зарадам +Ze утрымлівае вакол сябе Z электронаў з агульным зарадам -Ze. У цэлым атам электранейтральны. Пры страце электронаў ён ператвараецца ў дадатна зараджаны іон. Маса атама ў асноўным вызначаецца масай ядра і прапарцыянальная яго атамнай масе, якая прыблізна роўная масаваму ліку. Пры яго павелічэнні ад 1 (для атама вадароду, Z = 1) да 250 (для атама трансуранавых элементаў, Z>92) маса атама мяняецца ад 1,67·10​-27 да 4·10​-25 кг. Памеры ядра (парадку 10​-14—10​-15 м) вельмі малыя ў параўнанні з памерамі ўсяго атама (10​-10 м). Паводле квантавай тэорыі, для электронаў у атаме магчымы толькі пэўныя (дыскрэтныя) значэнні энергіі, якія для атама вадароду і вадародападобных іонаў вызначаюцца формулай En = hcR Z2 n2 , дзе h — Планка пастаянная, c — скорасць святла, R — Рыдберга пастаянная, n = 1, 2, 3 ... цэлы лік, які вызначае магчымае значэнне энергіі і наз. галоўным квантавым лікам. Велічыня hcR=13,60 эВ ёсць энергія іанізацыі атама вадароду, г. зн. энергія, неабходная на тое, каб перавесці электрон з асн. ўзроўню (n=1) на ўзровень n=∞, што адпавядае адрыву электрона ад ядра. Электроны ў атаме пераходзяць з аднаго ўзроўню энергіі на другі паводле квантавага закону EiEk=. Кожнаму значэнню энергіі адпавядае 2n​2 розных квантавых станаў, што адрозніваюцца значэннямі трох дыскрэтных фізічных велічыняў: арбітальнага моманту імпульсу Me, яго праекцыі Mez на некаторы напрамак z і праекцыі (на той жа напрамак) спінавага моманту імпульсу Msz. Me вызначаецца азімутальным квантавым лікам 1, які прымае n значэнняў (1=0, 1, 2 ..., n-1); Mez — арбітальным магнітным квантавым лікам me, які прымае 21+1 значэнняў (m1 = 1, 1-1, ..., -1); Msz спінавым магнітным квантавым лікам ms, які мае значэнні ½ і −½ (гл. Спін, Квантавыя лікі). Агульны лік станаў з аднолькавай энергіяй (зададзена n) наз. ступенню выраджэння ці статыстычнай вагой. Для атама вадароду і вадародападобных іонаў ступень выраджэння ўзроўняў энергіі gn=2n2. Зададзенаму набору квантавых лікаў n, 1, me адпавядае пэўнае размеркаванне электроннай шчыльнасці (імавернасці знаходжання электрона ў розных месцах атама). Паводле Паўлі прынцыпу, у атаме не можа быць двух (або больш) электронаў у аднолькавым стане, таму максімальны лік электронаў у атаме з зададзенымі n і 1 роўны 2 (21 + 1). Электроны ўтвараюць электронную абалонку атама і цалкам яе запаўняюць. На аснове ўяўлення пра паступовае запаўненне, з павелічэннем Z, усё больш аддаленых ад ядра электронных абалонак можна растлумачыць перыядычнасць хім. і фіз. уласцівасцяў элементаў. Гл. таксама Перыядычная сістэма элементаў Мендзялеева.

Літ.:

Шпольский Э.В. Атомная физика. Т. 1—2. М., 1984;

Борн М. Атомная физика. М., 1970;

Гольдин Л.Л., Новикова Г.И. Введение в квантовую физику. М., 1988;

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика;

Нерелятивистская теория. 4 изд. М., 1989.

М.А.Ельяшэвіч.

т. 2, с. 66

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЯ ПРАДУКЦЫ́ЙНАСЦЬ,

сукупнасць працэсаў стварэння, трансфармацыі, паглынання і праходжання энергіі праз эколага-біял. сістэмы розных узроўняў — ад асобных арганізмаў да біягеацэнозу. Характарызуе ўласцівасць асобных папуляцый або згуртавання (біяцэнозу) у цэлым аднаўляць сваю біямасу або ўтвараць арган. рэчывы ў форме тых ці інш. арганізмаў. У больш вузкім сэнсе біялагічная прадукцыйнасць — павелічэнне рэсурсаў эканамічна каштоўных арганізмаў (жывёл, раслін), іх масы, колькасці на адзінку плошчы за адзінку часу.

Мерай біялагічнай прадукцыйнасці з’яўляецца велічыня прадукцыі (біямасы), якая ствараецца за адзінку часу на адзінку прасторы. Асабліва важна ўстанаўленне біялагічнай прадукцыйнасці біяцэнозаў на ўсіх трафічных узроўнях, а таксама карыснай часткі прадукцыі. Матэрыяльна-энергет. аснову біялагічнай прадукцыйнасці складае першасная прадукцыя. Яна вызначаецца як скорасць, з якой прамянёвая (сонечная) энергія засвойваецца прадуцэнтамі (пераважна зялёнымі раслінамі) у працэсе фотасінтэзу або хемасінтэзу і назапашваецца ў форме арган. рэчываў, што потым могуць выкарыстоўвацца ў якасці ежы. Штогадовая першасная прадукцыя раслін складае 170·10​9 т сухой масы і мае каля 300—500·10​21 Дж энергіі. Найб. частку гэтай колькасці (74·10​9 т) даюць лясы, асабліва трапічнай зоны. Прадукцыя жывёл (другасная) складае каля 3934·10​6 т штогод. Другасная біялагічная прадукцыйнасць знаходзіцца ў поўнай залежнасці ад першаснай. На павелічэнне біялагічнай прадукцыйнасці аграбія- і біягеацэнозаў арыентаваны меліярацыйныя, гасп., біятэхн. і прыродаахоўныя мерапрыемствы. Вывучэнне біялагічнай прадукцыйнасці прыродных сістэм — аснова рацыянальнага выкарыстання, аховы і забеспячэння аднаўлення біял. рэсурсаў Зямлі.

т. 3, с. 171

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІСЛЯ́ЛЬНА-АДНАЎЛЯ́ЛЬНЫ ПАТЭНЦЫЯ́Л, рэдакс-патэнцыял,

значэнне свабоднай энергіі дынамічна ўраўнаважанай акісляльна-аднаўляльнай сістэмы ў электрахім. Працэсе; раўнаважны электродны патэнцыял. Характарызуе пэўнае электралітычнае асяроддзе. Напр., у водным растворы хлорнага жалеза іоны Fe​3+ захопліваюць свабодныя электроны з электрода з неакісляльнага металу (плаціна, золата) і аднаўляюцца да іонаў Fe​2+. Пасля дасягнення пэўнай канцэнтрацыі Fe​2+ у растворы пачынаецца адваротны працэс. Праз пэўны час скорасці рэакцый акіслення-аднаўлення ўраўнаважваюцца і на электродзе ўстанаўліваецца акісляльна-аднаўляльны патэнцыял, які вызначаецца ў вольтах. Чым большая акісляльная здольнасць асяроддзя, тым вышэйшы акісляльна-аднаўляльны патэнцыял. Карыстаюцца ў электрахім. метадах сінтэзу рэчываў, пры даследаваннях у біял. і аналітычнай хіміі.

т. 1, с. 192

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАЭЛЕВА́ТАР

(ад гідра... + элеватар),

струменная помпа для перамяшчэння па трубаправодзе вадкасцей і гідрасумесей. Выкарыстоўваецца для транспартавання матэрыялаў на невял. (да некалькіх соцень метраў) адлегласці, пры гідрамеханізацыі горных і земляных работ, для выдалення шламаў на абагачальных фабрыках, шлаку і попелу на электрастанцыях і ў кацельных і інш.

Дзеянне гідраэлеватара заснавана на прынцыпе перадачы энергіі аднаго патоку другому. Напорная вада з вял. скорасцю выцякае з насадкі ў камеру змешвання, дзе ствараецца разрэджванне і адбываецца ўсмоктванне матэрыялу. Утвораная гідрасумесь (пульпа) паступае ў дыфузар, які стварае напор і забяспечвае далейшае перамяшчэнне сумесі па трубаправодах. Гідраэлеватары простыя па канструкцыі і надзейныя ў рабоце, але маюць невял. ккдз (да 30%).

т. 5, с. 238

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДЖЫНС (Jeans) Джэймс Хопвуд

(11.9.1877, Лондан — 16.9.1946),

англійскі фізік і астрафізік. Чл. Лонданскага каралеўскага т-ва (1906). Скончыў Кембрыджскі ун-т (1900), дзе і працаваў у 1901—04 і 1910—12. У 1905—09 у Прынстанскім ун-це, у 1923—44 у абсерваторыі Маўнт-Вілсан (ЗША). Навук. працы па кінетычнай тэорыі газаў, тэорыі цеплавога выпрамянення, будове і эвалюцыі зорак, зорных сістэм і туманнасцей. Незалежна ад Дж.Рэлея вывеў формулу размеркавання энергіі ў спектры выпрамянення абсалютна чорнага цела (гл. Рэлея—Джынса закон выпрамянення). Аўтар адной з касмаганічных гіпотэз. Каралеўскі медаль (1919).

Тв.:

Рус. пер. — Вселенная вокруг нас. М.; Л., 1932;

Движение миров. М., 1933.

Дж.Джынс.

т. 6, с. 96

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВІ́ШНУ,

у вішнуізме і індуізме адзін з асн. (нароўні з Брахмам і Шывам) багоў; ахоўнік, увасабленне вечна жывой прыроды, энергіі, што ўладкоўвае космас. Уяўлялі прыгожым юнаком (часам з чатырма рукамі) з цёмна-сінім колерам скуры. Жонка Вішну Лакшмі — багіня шчасця і дабрабыту. Паводле эпасу, у канцы кожнага сусв. цыкла Вішну ўбірае ў сябе сусвет і ўпадае ў сон, лежачы на змеі Шэшы, які плавае ў сусв. акіяне. Калі Вішну прачынаецца і задумвае новае тварэнне, з яго вырастае лотас, з якога з’яўляецца Брахма і стварае сусвет. Звычайнае месцазнаходжанне Вішну — вяршыня гары Меру. Вядомы аватары Вішну (цялесныя ўвасабленні) у выглядзе герояў Крышны, Рамы, вепра, карліка і інш.

А.В.Гурко.

т. 4, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЫТАВЫ́Я АДХО́ДЫ,

разнастайныя паводле складу і фіз.-хім. уласцівасцяў рэшткі, якія ўтвараюцца ў працэсе бытавой дзейнасці чалавека. Падлягаюць выдаленню або ліквідацыі для папярэджання забруджвання навакольнага асяроддзя. У сувязі з павелічэннем аб’ёмаў бытавых адходаў з’яўляюцца крыніцай біятычнага, механічнага, хім. і інш. відаў забруджвання навакольнага асяроддзя, пагаршаюць яго сан.-эпідэміялагічныя, аздараўленчыя і эстэт. вартасці. Нейтралізацыя адмоўнага ўплыву бытавых адходаў звязана з распрацоўкай спосабаў іх выкарыстання як сыравіны і крыніцы энергіі для розных галін нар. гаспадаркі (напр., харч. адходы як другасныя кармы для жывёлы, рэшткі металу і паперы — сыравіна для другаснай іх вытворчасці і інш.). Ствараюцца цэнтралізаваныя сістэмы выдалення і апрацоўкі вадкіх і цвёрдых бытавых адходаў (гл. Утылізацыя забруджвальнікаў).

Я.В.Малашэвіч.

т. 3, с. 377

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ЭЛЕКТРАСТА́НЦЫЯ

(АЭС),

электрастанцыя, дзе атамная (ядзерная) энергія ператвараецца ў электрычную. Першая ў свеце АЭС магутнасцю 5 МВт пачала дзейнічаць у 1954 у б. СССР (г. Обнінск). На АЭС цеплата, якая вылучаецца ў ядз. рэактары ў выніку ланцуговай рэакцыі дзялення ядраў некаторых цяжкіх хім. элементаў (напр., уран-233, уран-235, плутоній-239 і інш.), ператвараецца ў электрычную, як і на цеплавых электрастанцыях. АЭС складаюць аснову ядзернай энергетыкі. У склад АЭС уваходзяць ядзерны рэактар, цеплаабменнікі, помпы і агрэгаты для ператварэння цеплавой энергіі ў электрычную, электратэхн. абсталяванне. На АЭС выкарыстоўваюць рэактары пераважна на цеплавых і хуткіх нейтронах. У залежнасці ад тыпу і агрэгатнага стану цепланосьбіта выбіраецца тэрмадынамічны цыкл АЭС. Вышэйшая т-ра цыкла вызначаецца найбольшай т-рай цеплавыдзяляльных элементаў і ўласцівасцямі цепланосьбітаў. Для выключэння перагрэву прадугледжана хуткае (на працягу некалькіх секунд) глушэнне ланцуговай ядз. рэакцыі аварыйнай сістэмай расхалоджвання.

Пры дзяленні 1 г ізатопаў урану або плутонію вызваляецца каля 22,5 МВт·гадз энергіі, што эквівалентна спальванню 2,8 т умоўнага паліва. Гэта з’яўляецца асн. аргументам эканамічнасці АЭС. Пасля аварыі на Чарнобыльскай АЭС (1986), пашырэння інфармацыі аб радыеактыўным забруджванні навакольнага асяроддзя і стане бяспекі на АЭС энергет. праграмы ў б. СССР пачалі згортваць. Аднак паглыбленне энергет. крызісу зноў ставіць пытанне пра будаўніцтва новых АЭС. Найбліжэйшыя да Беларусі дзеючыя АЭС (у дужках адлегласць у кіламетрах ад яе да дзярж. мяжы і да Мінска): Ігналінская ў Літве (5; 185), Смаленская ў Расіі (80; 355), Чарнобыльская (7; 310) і Ровенская на Украіне (60; 285).

А.М.Люцко.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)