ГО́РНАЯ СПРА́ВА,

галіна навукі і тэхнікі, звязаная з дабычай з нетраў зямлі карысных выкапняў. Пошук радовішчаў, вызначэнне колькасці, якасці і ўмоў залягання выкапняў робіцца пры правядзенні геолагаразведачных работ (уключаюць геал. здымку, пошукавыя работы, папярэднюю, дэталёвую, эксплуатацыйную разведку і інш.). Цвёрдыя карысныя выкапні здабываюць адкрытай распрацоўкай радовішчаў і падземнай распрацоўкай радовішчаў на прадпрыемствах-рудніках (шахтах), аснашчаных горнымі камбайнамі, інш. машынамі і механізмамі.

Пры адкрытым спосабе здабычы будуюць прадпрыемствы-кар’еры (разрэзы) і выкарыстоўваюць розныя горныя вырабаткі (траншэі, рудаспускі, катлаваны, дрэнажныя шахты і інш.). Укараняюцца сродкі і метады геатэхналогіі. Вадкія і газападобныя карысныя выкапні (нафта, мінер. вада, прыродны газ і інш.) здабываюць з дапамогай буравых свідравін (гл. Нафтаздабыча), газіфікацыяй паліва, вышчалочваннем і інш. Удасканальваюцца спосабы падводнай здабычы (пераважна нафты). Завяршальны працэс горнай тэхналогіі — абагачэнне карысных выкапняў. Радовішчы распрацоўваюць паводле праекта, які вызначае тэхналогію горных работ і сістэму распрацоўкі пакладу. Вял. ўвага аддаецца выбухованебяспечнасці, горнавыратавальнай справе, горнаму нагляду. Фіз.-мех. ўласцівасці горных парод, з’явы, што адбываюцца пры здабычы карысных выкапняў, спосабы здабычы, арганізацыі вытв-сці і інш. вывучаюцца горнай навукай. Адносіны, звязаныя з выкарыстаннем і аховай нетраў рэгулююцца горным заканадаўствам. Гл. таксама Горнахімічная прамысловасць.

Б.А.Багатаў.

т. 5, с. 363

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРМАТУ́РА

(ад лац. armatura узбраенне, амуніцыя),

дапаможныя, звычайна стандартныя прылады, прыстасаванні і дэталі, неабходныя для забеспячэння нармальнай работы абсталявання і трываласці канструкцый. Арматура жалезабетонных канструкцый успрымае пераважна расцягвальныя намаганні і стварае папярэдняе напружанне. Падзяляецца на рабочую (разліковую), мантажную і размеркавальную (канструкцыйную). Арматура павінна быць трывалая, пластычная, вязкая, добра зварвацца.

Найб. пашырана арматура стальная стрыжнёвая (гарачакачаная, умацаваная тэрмічна і выцягваннем) і драцяная (арматурны дрот, пасмы, канаты, тканыя і зварныя сеткі). Дыям. стрыжнёвай арматуры 6—90 мм, драцяной 3—8 мм. Для паляпшэння счаплення арматуры з бетонам ёй надаюць перыядычны профіль. У якасці арматуры жалезабетонных канструкцый выкарыстоўваюць таксама шкловалакно і вырабы з яго, шклапластыкі і інш. Арматура трубаправодная рэгулюе цячэнне вадкасці, паліва, газу, пары па трубах. Падзяляецца на запорную, рэгулявальную, вадазборную і засцерагальную (вентылі, краны, засаўкі, клапаны, рэгулятары ціску, кандэнсатаадводчыкі і інш.). Арматура электратэхнічная — шчыткі, патроны, выключальнікі, штэпсельныя разеткі і вілкі, некаторыя дэталі эл. машын, дэталі і прыстасаванні для мацавання ізалятараў і правадоў і інш. Арматура святлотэхнічная — часткі асвятляльных прыстасаванняў, прызначаныя для размеркавання светлавога патоку і аховы вачэй ад яркіх прамянёў, для падводу эл. току, прымацавання і аховы лямпаў ад пашкоджанняў і інш. Арматура пячная (металургічных пячэй) — сукупнасць метал. частак, якія павялічваюць трываласць печы і ахалоджваюць яе вонкавую паверхню.

т. 1, с. 487

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫБУХО́ВЫЯ РЭ́ЧЫВЫ,

асобныя хім. злучэнні ці сумесі, здольныя пры знешнім уздзеянні (награванне, удар, трэнне і інш.) да хуткай самараспаўсюджвальнай хім. рэакцыі з утварэннем газу і выдзяленнем вял. колькасці цеплыні. Да выбуховых рэчываў адносяцца пераважна нітразлучэнні (трынітраталуол, гексаген, актаген, тэтрыл, нітрагліцэрына, нітраты цэлюлозы і інш.) і солі неарган. кіслот (нітрат амонію, перхларат амонію, азід свінцу). Выкарыстоўваюць сумесі выбуховых рэчываў аднаго з адным ці з гаручымі рэчывамі (гл. Аманіты, Дынаміты, Дынамоны, Порахі). Выбуховыя рэчывы небяспечныя ў абыходжанні. Пры іх захоўванні, транспарціроўцы і выкарыстанні неабходны спец. меры засцярогі.

Хім. рэакцыя, якая ўзнікае ў абмежаваным аб’ёме выбуховых рэчываў, распаўсюджваецца па яго масе ў рэжыме дэтанацыі ці гарэння. Па выбуховых уласцівасцях (умовах пераходу гарэння ў дэтанацыю) і абумоўленых імі галінах выкарыстання выбуховыя рэчывы падзяляюць на ініцыіруючыя (першасныя), брызантныя (другасныя) і порахі (кідальныя). Ініцыіруючыя выбуховыя рэчывы лёгка загараюцца, гарэнне хутка пераходзіць у дэтанацыю пры атм. ціску. Выкарыстоўваюць для ўзбуджэння выбуховага пераўтварэння інш. выбуховых рэчываў. Брызантныя выбуховыя рэчывы больш інертныя, іх гарэнне можа перайсці ў дэтанацыю толькі пры наяўнасці трывалай абалонкі ці вял. колькасці рэчыва. Выкарыстоўваюцца для прамысл. выбуховых работ, як начынка боепрыпасаў і інш. Порахі пры гарэнні не дэтануюць нават пры высокім (сотні МПа) ціску. Выкарыстоўваюць у ствольнай зброі, як цвёрдае ракетнае паліва.

т. 4, с. 301

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАНЧА́РНЫ ГО́РАН,

печ для абпальвання ганчарных вырабаў, якая выкарыстоўваецца пры высокаразвітым ганчарстве. Абпальванне ажыццяўляецца гарачымі (700—900 °C) газамі, якія атрымліваюцца пры згаранні паліва. Працэс бывае акісляльны (найб. пашыраны) і ўзнаўляльны (пры недастатковым доступе кіслароду). У сучаснай вытв-сці выкарыстоўваюць горны верт. і гарыз. тыпаў (электрычныя, на мазутным або газавым паліве). Першыя ганчарныя горны вядомы з канца 4-га тыс. да н.э. ў краінах Стараж. Усходу. Былі адкрытага і закрытага тыпаў, 1-, 2-, 3-ярусныя. У Еўропе пашыраны з сярэдзіны 1-га тыс. да н.э., на ўсходнеслав. землях — з 12—13 ст. На Беларусі выяўлены горны ў Мінску (16 ст.), Оршы (17 ст.), Міры (18 ст.). Іх муравалі з цэглы, камянёў, гліны, пераважна 1- і 2-ярусныя, круглыя (грушападобныя) ці чатырохвугольныя ў плане, з адкрытым і купалападобным (скляпеністым) верхам. Ніжні (топачны) ярус заглыблялі ў зямлю, верхні па баках засыпалі грунтам і агароджвалі зрубам, часам умацоўвалі бярвеннем, жэрдкамі, метал. прутамі, дротам, каменнем і дзёрнам. Для агню рабілі яму, у якую выходзіла вусце топкі. Ярусы (камеры) падзяляліся гарыз. перакрыццем (скляпеннем) з адтулінамі (люхтамі) для праходу гарачых газаў. Звычайна ганчарныя горны былі разлічаны на адначасовую тэрмічную апрацоўку 300—350 (часам 800—1000) вырабаў, якая працягвалася 9—14 гадз.

В.М.Ляўко.

т. 5, с. 31

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКТЫНО́ІДЫ,

актыніды, сям’я з 14 хімічных радыеактыўных элементаў VII перыяду сістэмы элементаў з ат.н. 90—103: торый, пратактыній, уран, нептуній, плутоній, амерыцый, кюрый, берклій, каліфорній, эйнштэйній, фермій, мендзялевій, нобелій і лаўрэнсій. Уран, торый, менш пратактыній ёсць у прыродзе, астатнія актыноіды (наз. трансуранавыя элементы) атрыманы штучна ў выніку ядз. пераўтварэнняў. Вядучая роля ў сінтэзе і вывучэнні актыноідаў належыць Г.Сібаргу. Актыноіды — серабрыста-белыя металы высокай шчыльнасці (да 2∙10​4 кг/м³). Найб. легкаплаўкія нептуній і плутоній, tпл — 640 °C, астатнія плавяцца пры т-ры больш за 1000 °C. Актыноіды рэакцыйна-здольныя, у здробненым стане пірафорныя, лёгка рэагуюць з вадародам, кіслародам, азотам, серай, галагенамі, утвараюць комплексныя злучэнні. Блізкасць хім. уласцівасцяў актыноідаў паміж сабой і з лантаноідамі звязана з падабенствам канфігурацый вонкавых электронных абалонак іх атамаў. Практычна выкарыстоўваюцца торый, уран, плутоній; плутоній-238, кюрый-244 — у вытв-сці ядз. крыніц эл. току бартавых касм. сістэм. Некаторыя нукліды актыноідаў — у медыцыне, дэфектаскапіі, актывацыйным аналізе, нукліды урану-235, плутонію-239 — паліва ў ядз. энергетыцы, крыніца энергіі ў ядз. зброі. Актыноіды і іх злучэнні надзвычай таксічныя, што абумоўлена іх радыеактыўнасцю.

Літ.:

Сиборг Г.Т., Кац Дж.Д. Химия актинидных элементов: Пер. с англ. М., 1960;

Келлер К. Химия трансурановых элементов: Пер. с англ. М., 1976;

Лебедев Н.А., Мясоедов Б.Ф. Последние достижения в аналитической химии трансурановых элементов // Радиохимия. 1982. Т. 24, вып. 6.

т. 1, с. 213

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

А́ТАМНАЯ ЭЛЕКТРАСТА́НЦЫЯ

(АЭС),

электрастанцыя, дзе атамная (ядзерная) энергія ператвараецца ў электрычную. Першая ў свеце АЭС магутнасцю 5 МВт пачала дзейнічаць у 1954 у б. СССР (г. Обнінск). На АЭС цеплата, якая вылучаецца ў ядз. рэактары ў выніку ланцуговай рэакцыі дзялення ядраў некаторых цяжкіх хім. элементаў (напр., уран-233, уран-235, плутоній-239 і інш.), ператвараецца ў электрычную, як і на цеплавых электрастанцыях. АЭС складаюць аснову ядзернай энергетыкі. У склад АЭС уваходзяць ядзерны рэактар, цеплаабменнікі, помпы і агрэгаты для ператварэння цеплавой энергіі ў электрычную, электратэхн. абсталяванне. На АЭС выкарыстоўваюць рэактары пераважна на цеплавых і хуткіх нейтронах. У залежнасці ад тыпу і агрэгатнага стану цепланосьбіта выбіраецца тэрмадынамічны цыкл АЭС. Вышэйшая т-ра цыкла вызначаецца найбольшай т-рай цеплавыдзяляльных элементаў і ўласцівасцямі цепланосьбітаў. Для выключэння перагрэву прадугледжана хуткае (на працягу некалькіх секунд) глушэнне ланцуговай ядз. рэакцыі аварыйнай сістэмай расхалоджвання.

Пры дзяленні 1 г ізатопаў урану або плутонію вызваляецца каля 22,5 МВт·гадз энергіі, што эквівалентна спальванню 2,8 т умоўнага паліва. Гэта з’яўляецца асн. аргументам эканамічнасці АЭС. Пасля аварыі на Чарнобыльскай АЭС (1986), пашырэння інфармацыі аб радыеактыўным забруджванні навакольнага асяроддзя і стане бяспекі на АЭС энергет. праграмы ў б. СССР пачалі згортваць. Аднак паглыбленне энергет. крызісу зноў ставіць пытанне пра будаўніцтва новых АЭС. Найбліжэйшыя да Беларусі дзеючыя АЭС (у дужках адлегласць у кіламетрах ад яе да дзярж. мяжы і да Мінска): Ігналінская ў Літве (5; 185), Смаленская ў Расіі (80; 355), Чарнобыльская (7; 310) і Ровенская на Украіне (60; 285).

А.М.Люцко.

т. 2, с. 67

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАДАРО́Д,

гідраген (лац. Hydrogenium), H, хімічны элемент VII групы перыяд. сістэмы, ат. н. 1, ат. м. 1,00794. Прыродны вадарод складаецца з 2 ізатопаў ​1H (протый, 99,98% па масе) і ​2H ці Д (дэйтэрый, 0,02%), атрыманы штучныя радыеактыўныя ​3H ці Т (трытый) і вельмі няўстойлівы ​4H. У паветры колькасць вадароду 3,5·10​-6% па масе, у літасферы і гідрасферы — 1%, у вадзе — 11,19%, у складзе арганічных злучэнняў вадароду маюць усе раслінныя і жывёльныя арганізмы. Самы пашыраны элемент у космасе, складае каля палавіны масы Сонца, большасці зорак. Газ без колеру і паху, tпл -259,1 °C, tкіп -252,6 °C, шчыльн. вадкага 70,8 кг/м³ (-235 °C). Вадарод і яго сумесі з паветрам і кіслародам (гл. Грымучы газ) пажара- і выбухованебяспечныя.

Малекула вадароду двухатамная. Пры звычайных умовах узаемадзейнічае толькі з фторам і хлорам (на святле), пры павышаных т-рах у прысутнасці каталізатараў — з кіслародам (гл. Вада), галагенамі (гл. Галагенавадароды), азотам (гл. Аміяк). Са шчолачнымі і шчолачназямельнымі металамі, элементамі III—IV груп перыяд. сістэмы ўтварае гідрыды. Аднаўляе аксіды і галагеніды металаў да металаў, ненасычаныя вуглевадароды (гл. Гідрагенізацыя). Лёгка аддае электрон, у водных растворах пратон H​+ існуе ў выглядзе іона гідраксонію, утварае вадародную сувязь. У прам-сці атрымліваюць канверсіяй метану: CH4 + 2H2O = 4H2 + CO2; пры газіфікацыі вадкага і цвёрдага паліва (гл. Вадзяны газ).

Газападобны вадарод выкарыстоўваюць для сінтэзу аміяку, хлорыстага вадароду, метылавага і вышэйшых спіртоў, вуглевадародаў, для гідрагенізацыі тлушчу, таксама для зваркі і рэзкі металаў вадародна-кіслародным полымем, вадкі — як гаручае ў ракетнай і касм. тэхніцы, ізатопы — у атамнай энергетыцы.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЕНЗІ́Н,

прадукт перапрацоўкі нафты — сумесь вуглевадародаў рознай будовы. Бясколерная лятучая вадкасць, мае характэрны пах, tкіп 30—205 °C, шчыльн. 700—780 кг/м³, вогненебяспечны. Атрымліваюць дыстыляцыяй (прамагонны бензін), каталітычным крэкінгам газа-газойлевых і цяжкіх дыстылятных ці каталітычным рыформінгам бензінавых фракцый нафты. Асн. выкарыстанне — паліва для рухавікоў унутранага згарання. Прадпрыемствы па вытв-сці бензіну на Беларусі ёсць у Мазыры, Наваполацку.

У бензіне прамагонным 3—10% араматычных, 12—30% нафтэнавых, 60—80% нармальных парафінавых, 1—2% ненасычаных вуглевадародаў і да 0,2% серы; у бензіне крэкінгу 12—60% араматычных, 12—30% нафтэнавых, да 50% ненасычаных вуглевадародаў і да 0,2% серы; у бензіне рыформінгу ёсць араматычныя і ізапарафінавыя вуглевадароды, практычна няма ненасычаных і серы. Таварныя прадукты — сумесь бензіну з рознай сыравіны, іх маркі вызначаюцца актанавым лікам, эксплуатацыйныя ўласцівасці паляпшаюцца пры ўвядзенні алкілату, ізаактану, талуолу, некаторых прысадак (гл. таксама Антыдэтанатар). Вырабляюць бензін летні, зімовы, неэтыліраваны і этыліраваны (афарбаваны, мае да 1 мл этылавай вадкасці на 1 кг, ГДК 100 мг/м³). Бензін газавы (нафтавы) — вадкая сумесь насычаных вуглевадародаў. Атрымліваюць са спадарожных газаў, якія вылучаюцца пры здабычы нафты і яе стабілізацыі, ахаладжэннем ці паглынаннем мінер. маслам з наступнай перагонкай. Газавыя бензіны дабаўляюць да інш. бензіну (у т. л. зімовага) для паляпшэння «пускавых» характарыстык. Бензін з малой колькасцю араматычных вуглевадародаў (не больш як 3%) і серы выкарыстоўваюцца як растваральнікі і прамывачныя вадкасці. Уайт-спірыт — растваральнік і экстрагент для тлушчаў, смолаў, каўчукоў; Бензін «галош» выкарыстоўваецца ў вытв-сці гумавых клеяў.

Літ.:

Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокооктановых бензинов. М., 1981.

Л.М.Скрыпнічэнка.

т. 3, с. 98

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕ́ЛІЙ

(лац. Helium),

Не, хімічны элемент VII групы перыядычнай сістэмы, ат. н. 2, ат. м. 4,0026. Прыродны гелій складаецца з 2 стабільных ізатопаў ​4He (99,999862%) і ​3He. Належыць да інертных газаў. Адзін з найб. пашыраных элементаў космасу (2-і пасля вадароду). Адкрыты ў 1868 астраномамі Ж.Жансэнам і Н.Лок’ерам у спектры сонечнай кароны (назва ад грэч. helios — Сонца). У атмасферы 5,27·10​-4% па аб’ёме (​4He утвараецца пры α-распадзе радыенуклідаў торыю, урану і інш. элементаў). Ядры ​4He — альфа-часціцы. Гелій маюць некат. прыродныя газы (да 2% па аб’ёме) і мінералы. Вылучаны ў 1895 У.Рамзаем з мінералу клевеіту.

Аднаатамны газ без колеру і паху, tкіп -268,39 °C (самая нізкая сярод вадкасцей), шчыльн. 0,17847 кг/м³ (0 °C). Адзіны элемент, які не цвярдзее пры нармальным ціску нават пры т-ры, блізкай да 0 К, tпл -271,25 °C (ціск 3,76 МПа). Горш за інш. газы раствараецца ў вадзе, характарызуецца выключнай хім. інертнасцю. У прам-сці атрымліваюць з газаў прыродных гаручых метадам глыбокага ахаладжэння. Выкарыстоўваюць пры зварцы, рэзцы металаў, перапампоўванні ракетнага паліва, у вытв-сці цеплавыдзяляльных элементаў, паўправадніковых матэрыялаў (у якасці ахоўнага асяроддзя), у аэранаўтыцы, для кансервацыі харч. прадуктаў і інш. Гелій вадкі — квантавая вадкасць. Пры т-ры 2,17 К (-270,98 °C) і ціску пары 0,005 МПа (т.зв. λ-пункт) у вадкім ​4He (бозэ-вадкасць) адбываецца фазавы пераход другога роду (ад He I да He II). He I бурна кіпіць ва ўсім аб’ёме, He II — спакойная вадкасць, якой уласціва звышцякучасць. Выкарыстоўваюць у крыягеннай тэхніцы як холадагент, вадкі ​3He — адзінае рэчыва для вымярэння т-ры ніжэй за 1 К.

В.Р.Собаль.

т. 5, с. 140

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРО́ЛІЗ

(ад гідра... + ...ліз),

рэакцыя абменнага ўзаемадзення паміж рэчывам і вадой.

Пры гідродізе солей, утвораных слабай асновай і моцнай к-той (напр., хларыд амонію NH4Cl) ці — моцнай асновай і слабай к-той (напр., ацэтат натрыю CH3COONa), водныя растворы маюць кіслую (NH4+Cl​-+HOH=NH4OH+Cl​-+H​+) ці шчолачную (CH3COO​-+Na​++HOH=CH3COOH+Na​++OH​-) рэакцыю, што абумоўлена ўтварэннем слабых электралітаў. Гідроліз солей, утвораных моцнымі асновай і к-той, не ідзе. Гідролізам абумоўлена існаванне буферных раствораў, здольных падтрымліваць пастаянную кіслотнасць. Гідроліз мінералаў выклікае змяненні ў саставе зямной кары. Пры гідролізе арганічных злучэнняў пад уздзеяннем вады разрываюцца сувязі ў малекуле з утварэннем двух і больш злучэнняў. Гідроліз вугляродаў і бялкоў у жывым арганізме каталізуюць ферменты гідралазы. Гідроліз адыгрывае значную ролю ў працэсах засваення стравы і ўнутрыклетачнага абмену. З дапамогай гідролізу ў хім. прам-сці атрымліваюць спірты, карбонавыя к-ты з іх вытворных, мыла і гліцэрыны з тлушчаў. Гідроліз раслінных матэрыялаў — аснова гідролізных вытв-сцей. У працэсе тэрмакаталітычнага гідролізу з поліцукрыдаў (цэлюлоза і геміцэлюлозы), якія складаюць каля 70% расліннай біямасы, утвараюцца растваральныя ў вадзе монацукрыды і прадукты іх распаду, што пераходзяць у раствор — гідралізат. Гідралізат акрамя монацукрыдаў (2,5—3,5 %, пераважна пентозы і гексозы) мае фурфурол, оксіметафурфурол, воцатную і мурашыную к-ты, гумінавыя рэчывы і інш. Пасля гідролізу застаецца цвёрды астатак — гідролізны лігнін (30—35% ад масы сыравіны). Хім. і біяхім. перапрацоўкай (ферментацыяй) гідралізату атрымліваюць харч. глюкозу, тэхн. ксілозу, шмататамныя спірты (ксіліт, сарбіт), гліцэрыну, этыленгліколь, этылавы спірт, ацэтон, бялковыя кармавыя дрожджы, вітаміны і інш. З гідролізнага лігніну атрымліваюць адсарбенты, арганамінер. ўгнаенні, паліва і інш. прадукты тэхн. прызначэння. Гл. таксама Гідролізная прамысловасць.

Т.П.Цэдрык.

т. 5, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)