ВЫТВО́РНАЯ функцыі, ліміт адносін прырашчэння функцыі да прырашчэння аргумента; адно з асн. паняццяў дыферэнцыяльнага злічэння. Характарызуе хуткасць змены функцыі пры змене яе аргумента. Абазначаецца , ,
. Вытворная функцыі у пункце x0 роўная вуглавому каэфіцыенту датычнай да лініі у яе пункце Mo з абсцысай xo.
Паводле вызначэння
, дзе x0 — пункт, у некаторым наваколлі якога вызначана функцыя ;
— прырашчэнне аргумента;
— адпаведнае прырашчэнне функцыі. Калі гэты ліміт канечны, то функцыя наз. дыферэнцавальнай у пункце x0. Аперацыя знаходжання вытворнай наз. дыферэнцаваннем. Вытворнай ад y′ (першай вытворнай) ёсць другая вытворная (y″) і г.д. Для функцый некалькіх зменных вызначаюцца частковыя вытворныя — вытворныя па аднаму з аргументаў пры ўмове пастаянства ўсіх астатніх аргументаў.
Паняццем вытворнай карыстаюцца пры рашэнні многіх задач матэматыкі, фізікі, тэхнікі і інш. навук.
Літ.:
Курс вышэйшай матэматыкі. Мн., 1994;
Гусак А.А. Высшая математнка. Т. 1—2. 2 изд. Мн., 1983—84.
А.А.Гусак.
т. 4, с. 326
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)