ІЗАМАРФІ́ЗМ (ад іза... + грэч. morphe форма) у матэматыцы, узаемна адназначнае адлюстраванне аднаго матэм. аб’екта з зададзенымі на ім аперацыямі і суадносінамі (напр., групы, структуры, поля) на другі, якое захоўвае гэтыя аперацыі і суадносіны; адно з асн. паняццяў сучаснай матэматыкі. І. алг. сістэмы на сябе наз. аўтамарфізмам.

Паняцце І. ўзнікла ў пач. 19 ст. ў тэорыі груп, дзе Р.Дэкарт заўважыў, што вывучэнне ўнутранай будовы двух ізаморфных аб’ектаў уяўляе сабой адну і тую ж задачу; сучасную тэрміналогію распрацавала ням. матэматык Э.Нётэр. І. выяўляе ўласцівасці аперацый і суадносін, якія не залежаць ад элементаў даследаваных аб’ектаў і аднолькавыя для ўсіх ізаморфных аб’ектаў (абстрактныя ўласцівасці). Напр., мноству X сапраўдных лікаў з зададзенай аперацыяй множання ізаморфнае мноства Y сапраўдных лікаў з зададзенай аперацыяй складання, калі ліку x з X паставіць у адпаведнасць лік y=logax з Y (адваротнае адлюстраванне x=a​y). Тады здабытку x=x1x2 адпавядае сума y=y1+y2=logax1+logax2, узвядзенню ў n-ю ступень — множанне на n, здабыванню кораня ступені n — дзяленне на n і інш., што закладзена ў аснову выкарыстання лагарыфмаў у арыфм. вылічэннях, прынцыпу работы лагарыфмічнай лінейкі і інш. Гл. таксама Гомамарфізм.

Р.Т.Вальвачоў.

т. 7, с. 176

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)