фізі́чны

(гр. physikos)

1) які мае адносіны да фізікі, уласцівы галіне з’яў, якімі займаецца фізіка (напр. ф-ыя законы, ф-ыя працэсы);

2) прызначаны для вывучэння фізікі (напр. ф-ая лабараторыя);

3) звязаны са станам чалавечага арганізма, працай мышцаў (напр. ф-ае выхаванне);

4) звязаны з уздзеяннем на цела, арганізм (напр. ф-ае пакаранне).

Слоўнік іншамоўных слоў. Актуальная лексіка (А. Булыка, 2005, правапіс да 2008 г.)

system [ˈsɪstəm] n.

1. сістэ́ма; спо́саб, ме́тад;

a good system of teaching до́брая сістэ́ма навуча́ння;

His work lacks system. У яго рабоце не хапае сістэмы.

2. аргані́зм;

The poison has passed into his system. У яго арганізм трапіла атрута.

3. лад, устро́йства;

a political system дзяржа́ўны лад, паліты́чны лад

4. класіфіка́цыя, сістэ́ма;

the system of units phys. сістэ́ма вымярэ́нняў;

the natural system chem. перыяды́чная сістэ́ма элеме́нтаў;

the metric system метры́чная сістэ́ма;

a system of philosophy філасо́фская сістэ́ма

5. се́тка (дарог, труб і да т.п.);

a nervous system нерво́вая сістэ́ма;

a telephone system тэлефо́нная се́тка

get smth. out of one’s system infml вы́весці што-н. з аргані́зма; пазба́віцца ад яко́га-н. пачуцця́;

I must get her out of my system. Я павінен выкінуць яе з галавы і з сэрца.

Англійска-беларускі слоўнік (Т. Суша, 2013, актуальны правапіс)

АСМАТЫ́ЧНЫ ЦІСК, дыфузны ціск,

лішкавы гідрастатычны ціск раствору, які перашкаджае дыфузіі растваральніку праз паўпранікальную перагародку; тэрмадынамічны параметр. Характарызуе імкненне раствору да зніжэння канцэнтрацыі пры сутыкненні з чыстым растваральнікам пры сустрэчнай дыфузіі малекул растворанага рэчыва і растваральніку. Абумоўлены змяншэннем хімічнага патэнцыялу растваральніку ў прысутнасці растворанага рэчыва. Роўны лішкаваму вонкаваму ціску, які неабходна прыкласці з боку раствору, каб спыніць осмас. Вымяраецца ў паскалях.

Вымярэнні асматычнага ціску пачаў у 1877 ням. батанік В.Пфефер у растворы трысняговага цукру. Па яго даных галандскі хімік Я.Х.Вант-Гоф устанавіў у 1887, што залежнасць асматычнага ціску ад канцэнтрацыі цукру па форме супадае з Бойля-Марыёта законам для ідэальных газаў. Асматычны ціск вымяраюць з дапамогай асмометраў. Статычны метад вымярэння асматычнага ціску заснаваны на вызначэнні лішкавага гідрастатычнага ціску па вышыні слупка вадкасці H пасля ўстанаўлення стану раўнавагі пры роўнасці вонкавых ціскаў PА і PБ; дынамічны метад зводзіцца да вымярэння скорасці V усмоктвання і выціскання растваральніку з асматычнай ячэйкі пры розных значэннях лішкавага ціску P = PА  – PБ з наступнай інтэрпаляцыяй атрыманых даных да V=0 пры лішкавым ціску Δp, роўным асматычнаму ціску. Па велічыні асматычнага ціску распазнаюць: ізатанічныя, або ізаасматычныя, растворы, якія маюць аднолькавы асматычны ціск (незалежна ад саставу), гіпертанічныя з больш высокім Асматычным ціскам і гіпатанічныя растворы з больш нізкім асматычным ціскам.

Асматычны ціск адыгрывае важную ролю ў жыццядзейнасці жывых клетак і арганізмаў. У клетках і біял. вадкасцях ён залежыць ад канцэнтрацыі раствораных у іх рэчываў. Па велічыні асматычнага ціску вадкасцяў унутр. асяроддзя арганізма (кроў, гемалімфа і інш.) водныя арганізмы падзяляюцца на гіпер-, гіпа- і ізаасматычныя. Сярэдняя велічыня і дыяпазон асматычнага ціску ў розных арганізмаў розныя і залежаць ад віду і ўзросту арганізма, тыпу клетак і асматычнага ціску навакольнага асяроддзя (напр., асматычны ціск клетачнага соку наземных органаў балотных раслін 0,2—1,6 МПа, у стэпавых 0,8—0,4, у дажджавых чарвякоў 0,36—0,48, у прэснаводных рыб 0,6—0,66, у акіянічных касцістых рыб 0,78—0,85, акулавых 2,2—2,3, млекакормячых 0,66—0,8 МПа). У гіперасматычных арганізмаў (прэснаводныя жывёлы, некаторыя марскія храстковыя рыбы — акулы, скаты; усе расліны) унутр. Асматычны ціск перавышае асматычны ціск навакольнага асяроддзя, таму іоны могуць актыўна паглынацца арганізмам і ўтрымлівацца ў ім, а вада паступае праз біял. мембраны пасіўна, у адпаведнасці з асматычным градыентам. У гіпаасматычных жывёл (касцістыя рыбы, некаторыя марскія паўзуны, птушкі) асматычны ціск крыві меншы за асматычны ціск навакольнага асяроддзя. Адноснае пастаянства Асматычнага ціску забяспечваецца водна-салявым абменам праз осмарэгулявальныя органы (гл. ў арт. Осмарэгуляцыя).

Літ.:

Курс физической химии. Т.1—2. 2 изд. М., 1970—73;

Пасынский А.Г. Коллоидная химия. 3 изд. М., 1968;

Гриффин Д., Новик Эл. Живой организм: Пер. с англ. М., 1973.

т. 2, с. 38

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКО́ВЫ АБМЕ́Н,

сукупнасць хім. пераўтварэнняў бялкоў і амінакіслот у жывых арганізмаў; важнейшая частка абмену рэчываў (у спалучэнні з пераўтварэннямі інш. азотазмяшчальных рэчываў утварае сістэму азоцістага абмену). Два ўзаемазвязаныя бакі бялковага абмену ў арганізме — распад (катабалізм) і біясінтэз (анабалізм) бялкоў. Першая стадыя аднаўлення бялкоў — іх гідроліз да амінакіслот пры дапамозе ферментаў катэпсінаў (тканкавых пратэіназаў), што лакалізаваны пераважна ў лізасомах (дзейнічаюць у кіслым асяроддзі). Амінакіслоты ўтвараюцца і пры гідролізе (ператраўленні) харч. бялкоў пад уздзеяннем пратэалітычных ферментаў (пратэазаў) страўнікава-кішачнага тракту (пепсін, трыпсін, хіматрыпсін, эластаза, экзапептыдазы), якія ўсмоктваюцца ў ім і трапляюць у клетку. Толькі такім шляхам паступаюць у арганізм неабходныя яму незаменныя амінакіслоты. У клетках амінакіслоты ўтвараюць амінакіслотны фонд клеткі, выкарыстоўваюцца на сінтэз пептыдаў, бялкоў, пурынаў, пірымідзінаў, гемапратэінаў, вугляводаў, ліпідаў, нізкамалекулярных гармонаў і інш. рэчываў, уступаюць у асн. агульныя рэакцыі абмену: пераамініраванне, дэзамініраванне і дэкарбаксіліраванне.

Пры пераамініраванні (трансмініраванні) α-амінагрупа адшчапляецца ад L.-амінакіслот і пераносіцца ў асноўным на α-вуглярод α-кетаглутаравай кіслаты. Гэта рэакцыя мае асабліва вял. значэнне пры біясінтэзе амінакіслот у раслінах: нітраты і нітрыты, што трапляюць у расліны з глебы, аднаўляюцца з утварэннем аміяку, які звязваецца з α-кетаглутаравай кіслатой; утвараецца глутамінавая кіслата. Амінагрупа гэтай кіслаты ў працэсе рэакцыі пераносіцца на кетакіслоты з утварэннем інш. амінакіслот. Пры дэзамініраванні адбываецца распад амінакіслот з выдзяленнем аміяку. Найб. значэнне ў арганізме жывёл і чалавека мае акісляльнае дэзамініраванне, пры якім утвараецца кетакіслата і аміяк. Утвораныя пры пераамініраванні і акісляльным дэзамініраванні α-кетакіслоты здольныя аднаўляцца з утварэннем амінакіслот, якія ў працэсе катабалізму могуць выкарыстоўвацца на сінтэз глюкозы і ацэтонавых цел. Пры дэкарбаксіліраванні амінакіслот вылучаецца вуглякіслы газ (CO2) і ўтвараюцца аміны, а пры дэкарбаксіліраванні араматычных амінакіслот — біягенныя аміны (трыптамін, сератанін, гістамін, γ-амінамасляная кіслата). Аміяк, што ўтвараецца пры дэзамініраванні амінакіслот і амінаў, таксічны для арганізма. Абясшкоджванне яго адбываецца пры аднаўленчым амініраванні, у рэакцыях сінтэзу глутаміну і аспаргіну, у цыкле сінтэзу мачавіны ў печані (у чалавека, млекакормячых і некат. інш. жывёл) ці мачавой кіслаты (у птушак, рэптылій, насякомых). У чалавека і жывёл мачавіна выдаляецца з арганізма з мачой, часткова ў выглядзе аманійных соляў, у раслін магчыма паўторнае яе ўключэнне ў працэсы сінтэзу бялку. Збалансаваны па паступленні (у т. л. ў складзе незаменных амінакіслот) і выдаленні азоту, бялковы абмен вызначае фарміраванне ў арганізме стану азоцістай раўнавагі, калі патрэба яго ў бялках можа быць мінімальнай (гл. Бялковы мінімум). Рэгулюецца бялковы абмен ў чалавека і жывёл ферментамі, гармонамі пры ўдзеле нерв. сістэмы (гл. Нейрагумаральная рэгуляцыя, Гарманальная рэгуляцыя).

Літ.:

Строев Е.А. Биологическая химия. М., 1986;

Николаев А.Я. Биологическая химия. М., 1989;

Березов Т.Т., Коровкин Б.Ф. Биологическая химия. 2 изд. М., 1990.

В.К.Кухта.

т. 3, с. 398

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБМЕ́Н РЭ́ЧЫВАЎ, метабалізм,

сукупнасць хім. ператварэнняў рэчываў у жывых арганізмах, якія забяспечваюць іх развіццё, жыццядзейнасць, самаўзнаўленне, сувязь з навакольным асяроддзем і адаптацыю да змен у ім. Аснову абмену рэчываў складаюць непарыўна звязаныя і ўзаемаабумоўленыя працэсы анабалізму, катабалізму і абмену энергіі. У сукупнасці яны забяспечваюць структурную і функцыян. цэласнасць арганізмаў, ляжаць у аснове іх гамеастазу. У планетарным маштабе абмен рэчываў складае важную частку кругавароту рэчываў у прыродзе. Для кожнага віду жывых арганізмаў характэрны свой, генетычна замацаваны ўзровень абмену рэчываў, які залежыць ад іх спадчынных уласцівасцяў, месца ў эвалюцыйным радзе, узросту, полу, умоў існавання і інш. фактараў (напр., абмен рэчываў ніжэйшы ў раслін і халаднакроўных жывёл, вышэйшы ў цеплакроўных, слабы ў час спячкі, анабіёзу, высокі ў перыяд размнажэння і г.д.). Пры вял. і разнастайным асартыменце арган. рэчываў, якія ўцягваюцца ў абмен, агульная яго схема ў розных арганізмаў падобная, вызначаецца ўпарадкаванасцю і падабенствам паслядоўнасці біяхім. ператварэнняў, што адбываюцца пры абавязковым удзеле ферментаў. Дзякуючы абмену рэчываў з пажыўных рэчываў утвараюцца характэрныя для дадзенага арганізма злучэнні, якія выкарыстоўваюцца як буд. ці энергет. матэрыял, пастаянна і няспынна абнаўляюцца органы і тканкі без прынцыповай змены іх хім. саставу. Асн. тыпы злучэнняў, якія ўдзельнічаюць у абмене рэчываў у арганізме, — бялкі, тлушчы, вугляводы, мінеральныя рэчывы. Іх навук. даследаванне вылучаецца ў самаст. раздзелы біяхіміі.

Ператварэнні рэчываў ад моманту іх паступлення ў арганізм да ўтварэння канчатковых прадуктаў распаду складаюць сутнасць т.зв. прамежкавага абмену рэчываў. Асн. яго этапы: ператраўленне і ўсмоктванне пажыўных рэчываў у страўнікава-кішачным тракце; дастаўка атрыманых рэчываў да розных органаў і тканак; іх перабудова, раскладанне і выкарыстанне для біясінтэзу спецыфічных рэчываў, клетак і тканак; раскладанне такіх рэчываў з утварэннем прамежкавых злучэнняў і канчатковых прадуктаў абмену; выдаленне апошніх з арганізма. Цэнтр. месца ў абмене рэчываў належыць цыклу трыкарбонавых кіслот, у якім перакрыжоўваюцца шляхі бялковага, вугляводнага, тлушчавага абмену (гл. схему). Найважн. прамежкавы прадукт абмену рэчываў — ацэтылкаэнзім A, які ўдзельнічае ва ўсіх працэсах анабалізму і катабалізму і аб’ядноўвае іх; асн. канчатковыя прадукты — H2O, CO3, NH3, мачавіна і інш. У рэгуляванні працэсаў абмену рэчываў гал. месца займаюць змены актыўнасці і інтэнсіўнасці сінтэзу клетак, абмен можа самарэгулявацца па прынцыпе адваротнай сувязі. Вял. значэнне ў рэгуляванні абмену рэчываў маюць біял. мембраны. У высокаарганізаваных жывёл рэгулюецца і каардынуецца нейрагумаральнай сістэмай пры ўдзеле біял. актыўных рэчываў (вітаміны, гармоны, медыятары і інш.). Разбалансаванне абмену рэчываў з’яўляецца прычынай або вынікам узнікнення разнастайных хвароб, фіксацыя змен у ім — важны дыягнастычны сродак. Гл. таксама Бялковы абмен, Вугляводны абмен, Тлушчавы абмен, Мінеральны абмен.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Страйер Л. Биохимия: Пер. с англ. Т. 1—3. М., 1984—85.

Я.В.Малашэвіч.

Схема абмену рэчываў.

т. 1, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

абера́цыя

(лац. aberratio = адхіленне)

1) астр. уяўнае адхіленне нябесных свяціл ад іх сапраўднага месцазнаходжання, якое выклікаецца рухам Зямлі вакол Сонца;

2) фіз. скажэнне або недастатковая выразнасць паказанняў аптычных прыбораў (напр. сферычная а., храматычная а.);

3) біял. адхіленне ад нормы ў будове арганізма або ў функцыі асобных органаў;

4) перан. памылка, адхіленне ад ісціны.

Слоўнік іншамоўных слоў (А. Булыка, 1999, правапіс да 2008 г.)

АНТРАПАСО́ФІЯ (ад антрапа... + грэч. sophia мудрасць),

акультна-містычнае вучэнне пра чалавека як носьбіта таямнічых духоўных сіл; разнавіднасць тэасофіі. Заснавальнік антрапасофіі ням. філосаф-містык Р.Штайнер стварыў у 1913 антрапасофскую школу з мэтай выхаваць у юнацтва ўменне «духоўнага сузірання», якое ў стане самыя таямнічыя з’явы рабіць даступнымі для ўспрымання. Паводле гэтага вучэння, чалавек — трыадзінства цела, душы і духу, духам кіруе закон пераўвасаблення (рэінкарнацыя). У асобным жыцці чалавечы дух паўтарае сам сябе з улікам ранейшых уражанняў і перажыванняў. Чалавечае цела кіруецца законам наследавання, душа — створаным ёю самой лёсам (карма). Пасля смерці сувязь духу і душы захоўваецца, пакуль душа не вызваліцца ад цела. У сац.-паліт. жыцці антрапасофія зыходзіць з раздраблення сац. арганізма на самастойныя сферы: дзяржаву, правасуддзе, эканоміку. У 1-й трэці 20 ст. вучэнне антрапасофіі стала пашыраным у шэрагу краін Еўропы. Пэўны ўплыў яно зрабіла на дзеячаў культуры і мастацтва (А.Белы, В.Кандзінскі, М.Валошын, Б.Вальтэр і інш.). Цікавасць да антрапасофіі ажывілася і ў апошняй трэці 20 ст., асабліва ў ЗША, еўрап. краінах. У апошнія гады распаўсюдзілася на Беларусі, гал. чынам гэтаму садзейнічалі аднаўленне цікавасці да тэасофскіх ідэй А.Блавацкай і ўзнікненне суполак крышнаітаў.

Літ.:

Белый А. Рудольф Штейнер и Гете в мировоззрении современности. М., 1917;

Abendroth W.R. Steiner und die heutige Welt. München, 1969.

Я.М.Бабосаў.

т. 1, с. 392

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРГАНІ́ЧНАЯ ШКО́ЛА ў сацыялогіі, кірунак у зах. сацыялогіі ў канцы 19 — пач. 20 ст., звязаны са спробамі тэарэт. абгрунтаваць сутнасць і развіццё грамадства на аснове аналогіі з прыродай жывога арганізма. Абапіраючыся на дасягненні біялогіі (клетачнай будовы арганізмаў і эвалюцыйнай тэорыі Дарвіна), імкнулася, каб сацыялогія заняла прамежкавае месца паміж прыродай чалавека і чалавечым грамадствам. Асобныя прынцыпы такой тэорыі вядомы яшчэ ў сац.-філас. канцэпцыях Платона, Арыстоцеля, Гобса, Мантэск’е і інш. У поглядах Кона і Спенсера ідэя біял. рэдукцыянізму набыла больш выразны сацыялагічны характар. Класічныя прадстаўнікі школы А.Шэфле (Германія), Р.Вормс і А.Эспінас (Францыя), П.Ліліенфельд (Расія) сцвярджалі, што грамадства і ёсць арганізм, атаясамліваючы чалавека з клеткай, сац. інстытуты з яго органамі (напр., урад з галаўным мозгам, трансп. зносіны з кровазваротам, сувязь з нерв. сістэмай і г.д.). Сац. канфлікты яны зводзілі да хвароб, а іх прафілактыку і лячэнне звязвалі з «сацыяльнай гігіенай». Падобныя аналогіі стваралі бачнасць тэарэт. вырашэння сац. праблем, але не давалі адказаў на шматлікія пытанні, з якімі сутыкаліся і навукоўцы, і практыкі (палітыкі, эканамісты, кіраўнікі і г.д.). Таму да пач. 20 ст. ідэі арганічнай школы саступілі месца больш строгім тэарэт. канцэпцыям, якія арыентуюцца на вывучэнне грамадства як больш складанай і самаст. сістэмы.

Літ.:

Вормс Р. Биологические принципы в социальной эволюции: Пер. с фр. Киев, 1912;

История социологии. Мн., 1993.

Е.М.Елсукоў.

т. 1, с. 468

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІСТАРЫ́ЧНАГА КРУГАВАРО́ТУ ТЭО́РЫЯ,

сукупнасць поглядаў на гіст. працэс і канцэпцый грамадскага развіцця, паводле якіх грамадства ўвогуле і яго асобныя галіны (дзяржаўнасць, паліт. жыццё, культура і г.д.) змяняюцца ўнутры ўстаноўленага замкнёнага цыкла. Прадугледжвае паслядоўную змену пэўных формаў (часта па аналогіі з ростам і развіццём жывога арганізма) з нязменным вяртаннем да зыходнага становішча гіст. руху, пасля чаго адбываецца адраджэнне і пачынаецца новы цыкл змен. Падобная тэорыя была формай навук. асэнсавання гісторыі яшчэ ў глыбокай старажытнасці (у Арыстоцеля, Палібія ў вучэнні пра змену і кругаварот дзярж. формаў у рамках пэўнага цыкла). У філасофіі гістарычнага кругавароту тэорыя пераважала да ўзнікнення тэорыі грамадскага прагрэсу (18 ст.). Яе распрацоўвалі Н.Макіявелі, Дж.Віка, Ш.Фур’е і інш. У 19 і 20 ст. Гістарычнага кругавароту тэорыя захавала пэўны ўплыў, знайшла адлюстраванне ў працах М.Я.Данілеўскага, О.Шпенглера, А.Дж.Тойнбі, П.А.Сарокіна і інш. Напачатку яна была спробай знайсці ў плыні гіст. падзей пэўныя заканамернасці, сэнс, парадак і рытм, потым стала тэарэт. асновай даследавання індывід. асаблівасцей лакальных цывілізацый і культур, дасягненняў розных народаў, а таксама пэўнай процівагай тэорыям лінейнага прагрэсу і тэорыі грамадска-эканам. фармацый. Паўплывала на фарміраванне філас.-гіст. поглядаў многіх вучоных, у т. л. Г.Гегеля і інш.

Літ.:

Данилевский Н.Я. Россия и Европа. М., 1991;

Тойнби А.Дж. Постижение истории: Сб.: Пер. с англ. М., 1991.

В.І.Боўш.

т. 5, с. 266

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯМЕ́ТРЫЯ (ад бія... + ...метрыя),

біялагічная статыстыка, навука пра выкарыстанне матэм. метадаў у вывучэнні з’яў жывой прыроды. Уключае сукупнасць прыёмаў планавання і апрацоўкі даных біял. даследаванняў і назіранняў метадамі матэм. (варыяцыйнай) статыстыкі.

Асновы біяметрыі закладзены ў канцы 19 ст. працамі бельг. антраполага А.Кетле, англ. вучоных Ф.Гальтана і К.Пірсана, якія з 1901 выдавалі ў Лондане часопіс «Biometrica». Распрацоўка тэорыі малых выбарак у працах англ. вучонага В.Госета і біяметрычных метадаў у генет. даследаваннях англ. біёлага Р.Фішэра (1890—1962) адыграла значную ролю ў гісторыі біяметрыі. У Расіі выкарыстанню і развіццю біяметрыі спрыялі працы С.Н.Бернштэйна, А.Я.Хінчына, А.М.Калмагорава, У.І.Раманоўскага, І.І.Шмальгаўзена, С.С.Чацверыкова і інш. На Беларусі вял. ўклад зрабіў П.Ф.Ракіцкі.

Біяметрыя вывучае зменлівыя прыкметы арганізмаў і біял. працэсаў, іх размеркаванне ў сукупнасцях: нармальнае (паказвае размеркаванне варыянтаў па колькасных прыкметах), бінамінальнае (характарызуе якасныя прыкметы) і пуасонаўскае (адлюстроўвае рэдкую з’яву). Пры апрацоўцы вынікаў доследаў праводзяць ацэнку параметраў размеркавання (сярэдняй велічыні, сярэдняга квадратычнага адхілення, памылкі сярэдняй, дысперсіі, асіметрыі, эксцэсу, энтрапіі, лішку і інш.), параўнанне выбарачных размеркаванняў і іх параметраў (верагоднасць адрозненняў) і выяўленне стат. сувязяў (простая, частковая і множная карэляцыя, рэгрэсія), напр. паміж памерамі органаў і масай арганізма. Дысперсійны аналіз служыць для вызначэння ўплыву розных фактараў на зменлівасць прыкмет. Б. шырока ўжываецца ва ўсіх галінах біялогіі, а таксама ў раслінаводстве, жывёлагадоўлі і медыцыне.

А.С.Леанцюк.

т. 3, с. 175

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)