ВА́ДКАСЦЬ,

агрэгатны стан рэчыва, прамежкавы паміж цвёрдым і газападобным. Фіз. ўласцівасці і структура (блізкі парадак) залежаць ад хім. прыроды часцінак вадкасці і характару ўзаемадзеяння паміж імі. Спалучае ўласцівасці цвёрдага (малая сціскальнасць, свабодная паверхня, трываласць на разрыў пры ўсебаковым расцягненні і інш.) і газападобнага (зменлівасць формы) рэчываў. Існуе пры т-рах у інтэрвале ад т-ры крышталізацыі да т-ры кіпення і цісках большых, чым у трайным пункце.

Цеплавы рух малекул вадкасці складаецца з ваганняў каля стану раўнавагі і рэдкіх пераскокаў з аднаго раўнаважнага стану ў іншы, чым абумоўлена асн. ўласцівасць вадкасці — цякучасць. Адрозненні паміж вадкасцю і газам знікаюць у крытычным стане; пры больш высокіх т-рах вадкасць не існуе ні пры якім ціску. Некат. рэчывы маюць некалькі вадкіх фаз (напр., квантавыя вадкасці, вадкія крышталі). Нераўнаважныя цеплавыя і мех. працэсы ў вадкасці. (напр., дыфузія, цеплаправоднасць, электраправоднасць і інш.) вывучаюцца метадамі тэрмадынамікі неабарачальных працэсаў; мех. рух вадкасці як суцэльнага асяроддзя вывучае гідрадынаміка, няньютанавы (структурна-вязкасныя) вадкасці — рэалогія.

Літ.:

Крокстон К. Фиизика жидкого состояния: Пер. с англ. М., 1978;

Динамические свойства твердых тел и жидкостей: Пер. с англ. М., 1980.

В.І.Навуменка.

т. 3, с. 438

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАПРЫВО́Д,

сукупнасць крыніцы энергіі і прыстасаванняў для яе ператварэння і транспарціроўкі пры дапамозе вадкасці да прывадной машыны. Мэта ўжывання гідрапрывода — атрыманне патрэбнай залежнасці скорасці прывадной машыны ад нагрузкі, больш поўнае выкарыстанне магутнасці рухавіка, змяншэнне ўдарных нагрузак і інш. Як крыніца энергіі выкарыстоўваюцца эл. або цеплавы рухавікі, вадкасць пад ціскам і інш. У залежнасці ад віду гідраперадачы адрозніваюць гідрапрывод гідрастатычны (аб’ёмны), гідрадынамічны і змешаны (гл. Гідрастатычная перадача, Гідрадынамічная перадача).

Аб’ёмны гідрапрывод дазваляе з высокай дакладнасцю падтрымліваць або змяняць скорасць машыны пры адвольным нагружанні, дакладна ўзнаўляць зададзеныя рэжымы вярчальнага або зваротна-паступальнага руху. Выкарыстоўваецца ў металарэзных станках, прэсах, сістэмах кіравання лятальных апаратаў, суднаў, цяжкіх аўтамабіляў, цеплавых рухавікоў, гідратурбін, часам — як гал. прывод на аўтамабілях, кранах. Дынамічны гідрапрывод дазваляе ажыццяўляць толькі вярчальны рух, частата вярчэння яго вядучага вала аўтаматычна мяняецца са зменай нагрузкі. Выкарыстоўваецца для прывода грабных вінтоў, сілкавальных помпаў ЦЭС, шахтавых пад’ёмных машын, вентылятараў і інш. Змешаны гідрапрывод выкарыстоўваюць у штамповачных прэсах (цэнтрабежная помпа падае вадкасць у гідрацыліндр, які прыводзіць у рух рабочы інструмент прэса), машынах для запуску газавых турбін і інш.

І.У.Качанаў.

т. 5, с. 231

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АГРАФІ́ЗІКА (ад агра... + фізіка),

агранамічная фізіка, навука пра фіз. працэсы ў глебе і раслінах, выкарыстанне метадаў і сродкаў рэгулявання фіз. умоў жыцця с.-г. культур для павышэння іх прадукцыйнасці. Сфарміравалася ў пач. 20 ст. Станаўленне аграфізікі звязана з імёнамі Э.Расела, А.Ф.Іофе, Дз.М.Пранішнікава, М.А.Качынскага і інш. Развіваецца на аснове аграноміі і фізікі. Уключае: фізіку глебы і прыземнага слоя паветра, святлокультуру раслін, спосабы і сродкі рэгулявання вонкавых умоў жыцця раслін. На Беларусі праблемы аграфізікі вывучаюцца ў н.-д. ін-тах глебазнаўства і аграхіміі, меліярацыі і лугаводства, Бел. тэхнал. ун-це, Ін-це эксперым. батанікі АН Беларусі. Даследуюцца водна-фіз. і цеплавыя ўласцівасці, водна-паветраны рэжым, водны і цеплавы балансы глебаў, вільгацезабяспечанасць с.-г. і лясных культур, змена фактараў урадлівасці глебы пад уплывам меліярацыі і інтэнсіўнага земляробства, спосабы аптымізацыі фіз. умоў вырошчвання с.-г. культур, уздзеянне ўмоў навакольнага асяроддзя на працэс фотасінтэзу (С.Г.Скарапанаў, В.Ф.Шабека, К.П.Лундзін, Р.І.Афанасік, Л.П.Смаляк, У.Л.Калер, М.І.Афанасьеў). Вынікі даследаванняў з’яўляюцца тэарэт. асновай гідратэхн. меліярацыі і апрацоўкі глебаў, павышэння прадукцыйнасці раслін, выкарыстоўваюцца ў агратэхніцы.

Літ.:

Растворова О.Г. Физика почв. Л., 1983;

Агрофизические свойства почв и их регулирование в условиях интенсивного земледелия. Саранск, 1989.

М.І.Афанасьеў.

т. 1, с. 85

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛЕБАЎТВАРА́ЛЬНЫЯ ФА́КТАРЫ,

сукупныя працэсы, ад якіх залежыць утварэнне глебы. Паводле В.В.Дакучаева, глебу фарміруюць клімат, мацярынская парода, жывыя арганізмы (расліны, мікраарганізмы, глебавыя жывёлы), рэльеф мясцовасці, час. Вельмі ўплывае на глебаўтваральныя фактары і вытв. дзейнасць чалавека (мех. апрацоўка глебы, меліярацыя, унясенне арган. і мінер. угнаенняў, высечка лесу, узорванне і інш.). Усе глебаўтваральныя фактары ўзаемазвязаны.

Клімат уплывае на характар выветрывання горных парод, вызначае цеплавы і водны рэжым глебы. Мацярынская парода ў працэсе глебаўтварэння ператвараецца ў глебу. Ад яе грануламетрычнага складу і структуры залежаць уласцівасці глебы, паветраны рэжым і інш. Уздзеянне жывых арганізмаў выяўляецца ў назапашванні і разбурэнні арган. рэчыва, якое ствараецца зялёнымі раслінамі ў працэсе фотасінтэзу, унясенні ў глебу і на яе паверхню арган. і мінер. рэчываў у выглядзе каранёвага і наземнага ападу, які з дапамогай мікраарганізмаў і глебавых жывёл ператвараецца ў гумус. Расліны і жывёлы рыхляць глебу, паляпшаючы яе паветраныя і водныя ўласцівасці. Роля рэльефу заключаецца ў пераразмеркаванні на паверхні глебы рэчываў і энергіі, што істотна ўплывае на ўтварэнне пэўных глеб. Час развіцця сталага глебавага профілю залежыць ад геал. ўзросту тэрыторыі і ў розных умовах складае ад некалькіх дзесяткаў да тысяч гадоў.

Т.А.Раманава.

т. 5, с. 293

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАТЭРМІ́Я,

геатэрміка (ад геа... + грэч. thermē цяпло), раздзел геафізікі, які вывучае цеплавы стан нетраў і цеплавую гісторыю Зямлі. Даследуе цеплавое поле Зямлі, размеркаванне т-р і крыніц цеплавой энергіі нетраў, шчыльнасць цеплавой плыні з глыбінь ла паверхні, змяненні цеплавога стану Зямлі з моманту яе ўзнікнення да сучаснасці.

Т-ра рэчыва Зямлі павышаецца з глыбінёй і залежыць ад цеплавой плыні, што паступае з верхняй мантыі ў падэшву зямной кары і пры распадзе доўгажывучых радыеактыўных элементаў (пераважна ізатопаў урану, торыю, калію). Найб. вывучанае цеплавое поле верхняй ч. зямной кары, дзе магчымы непасрэдныя вымярэнні т-ры ў свідравінах (да глыб. 6—10 км). Аб т-ры больш глыбокіх нетраў мяркуюць паводле ўскосных звестак — т-ры вулканічных лаў і некат. геафіз. паказчыках. Цеплавое поле Зямлі характарызуецца шчыльнасцю цеплавой плыні, якая вызначаецца паводле велічыні геатэрмічнага градыента і каэфіцыента цеплаправоднасці горных парод. Геатэрмія цесна звязана з тэктонікай, геадынамікай і тэрмадынамікай, абапіраецца на даныя планеталогіі. Геатэрмічныя даследаванні выкарыстоўваюцца пры вывучэнні геал. будовы і геадынамічнай актыўнасці рэгіёнаў Зямлі, пры пошуках і эксплуатацыі радовішчаў нафты, газу і інш. карысных выкапняў.

Геатэрмія як галіна геафізікі адасобілася ў сярэдзіне 20 ст. Першыя вымярэнні шчыльнасці цеплавой плыні ў Еўропе зрабіў Э.Булард (Вялікабрытанія), на тэр. СНД — А.А.Любімава.

На Беларусі адзінкавыя замеры т-ры ў свідравінах рабілі з 1928. У 1965 Х.В.Багамолаў арганізаваў высокадакладныя вымярэнні т-ры ў свідравінах і вывучэнне цеплавых уласцівасцей горных парод і цеплавой плыні на ўсёй тэр. краіны, якія прадаўжаюцца ў Ін-це геал. навук Нац. АН Беларусі (П.П.Атрошчанка, Л.А.Цыбуля і інш.).

Літ.:

Богомолов Г.В., Цыбуля Л.А., Атрощенко П.П. Геотермическая зональность территории БССР. Мн., 1972;

Geothermal Atlas of Europe. Gotha, 1991/92.

У.І.Зуй.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

уда́р, -ру м., в разн. знач. уда́р;

гэ́ты гадзі́ннік не баі́цца ўда́руэ́ти часы́ не боя́тся уда́ра;

бо́мбавы ўдар — бо́мбовый уда́р;

~ры кі́рак — уда́ры ки́рок;

у. гро́му — уда́р гро́ма;

у. лёсу — уда́р судьбы́;

франта́льны ўдарвоен. фронта́льный уда́р;

штрафны́ ўдар — штрафно́й уда́р;

у. пу́льсу — уда́р пу́льса;

апаплексі́чны ўдар — апоплекси́ческий уда́р;

со́нечны ўдар — со́лнечный уда́р;

цеплавы́ ўдар — теплово́й уда́р;

адны́м ~рам — одни́м уда́ром;

пад ~рам (быць, знахо́дзіцца) — под уда́ром (быть, находи́ться);

у. у спі́ну — уда́р в спи́ну;

ста́віць пад у. — ста́вить под уда́р

Беларуска-рускі слоўнік, 4-е выданне (2012, актуальны правапіс)

МЕТЭАРАЛО́ГІЯ (ад метэа... + ...логія),

навука пра атмасферу Зямлі, фіз. працэсы і з’явы, якія ў ёй адбываюцца і ствараюць надвор’е і клімат. М. вывучае састаў і будову атмасферы, цеплаабарот і цеплавы рэжым у атмасферы і на зямной паверхні, вільгацеабарот і фазавыя пераўтварэнні вады ў атмасферы, рух паветр. мас, эл. і акустычныя з’явы ў атмасферы. Гал. задачы М.: забеспячэнне нар. гаспадаркі метэаралагічнай інфармацыяй з мэтай найб. поўнага і эфектыўнага выкарыстання спрыяльных умоў надвор’я і памяншэння страт ад небяспечных з’яў, удасканаленне метадаў прагнозу надвор’я, распрацоўка навук. асноў мэтанакіраванага ўздзеяння чалавека на атм. працэсы і кіравання імі. Падзяляецца на фізіку атмасферы (уключае фізіку прыземнага слоя паветра, аэралогію, фізіку верхніх слаёў атмасферы, актынаметрыю, атм. оптыку і атм. акустыку), дынамічную М. (вывучае атм. працэсы ў трапасферы і ніжняй стратасферы, распрацоўвае лічбавыя метады прагнозаў надвор’я), сінаптычную метэаралогію. Раздзел М., які вывучае клімат, вылучаецца ў кліматалогію. Існуе шэраг прыкладных галін М. (с.-г., лясная, авіяц., касм., марская, мед., ваенная і інш.). Асн. метад атрымання фактычных звестак пра атмасферу, надвор’е і клімат — назіранні, якія праводзяцца метэаралагічнымі станцыямі на зямной паверхні і ў верхніх слаях атмасферы з дапамогай метэаралагічных спадарожнікаў, метэаралагічных ракет, радыёзондаў і інш. Дзейнасць метэаралагічных службаў розных краін аб’ядноўвае Сусветная метэаралагічная арганізацыя.

Узнікла ў 17 ст., калі вынайдзены метэаралагічныя прылады — тэрмометр і барометр (Г.Галілеем з вучнямі). У 2-й пал. 18 ст. стала самаст. навукай. У 2-й пал. 19 ст. закладзены асновы дынамічнай М. (вучоныя амер. У.Ферэль, ням. Г.Гельмгольц), узнік сінаптычны метад даследавання (вучоныя франц. У.Левер’е, англ. Р.Фіцрой), пачаліся сістэм. аэралагічныя назіранні. Дасягненні М. ў 20 ст. звязаны з працамі вучоных нарв. В.Б’еркнеса, аўстр М.Маргулеса і Г.Фікера, франц. Л.Тэйсеран дэ Бора, рас. А.І.Ваейкава, А.А.Фрыдмана, П.А.Малчанава і інш.

На Беларусі метэаралагічныя назіранні пачаліся ў пач. 19 ст. Вял. ўклад у развіццё М. зрабіў А.І.Кайгарадаў, даследаванні па зборы, аналізе і абагульненні матэрыялаў выканалі Н.А.Малішэўская, Я.Б.Фрыддянд, І.А.Савікоўскі, Г.В.Валабуева (Гідраметэацэнтр), А.Х.Шкляр (БДУ), У.Ф.Логінаў (Нац. АН Беларусі) і інш.

Літ.:

Хромов С.П., Петросянц М.А Метеорология и климатология. 4 изд. М., 1994.

П.А.Каўрыга.

т. 10, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВО́БЛАКІ,

сістэмы завіслых у атмасферы прадуктаў кандэнсацыі вадзяной пары — кропелек вады, крышталікаў лёду або іх сумесей. Сукупнасць воблакаў называецца воблачнасцю. Утвараюцца воблакі пры кандэнсацыі вадзяной пары ў стане насычэння на ядрах кандэнсацыі. Дыяметр кропель — каля некалькіх мікронаў, маса вады ў 1 м³ паветра воблакаў — ад долі грама да некалькіх грамаў. Каля зямной паверхні яны ўтвараюць туман. Узбуйненне прадуктаў кандэнсацыі выклікае ападкі атмасферныя (дождж, снег, град).

Узнікненне воблакаў — вынік адыябатычнага ахалоджвання паветра пры яго пад’ёме, радзей — вынік ахалоджвання ад подсцільнай зямной паверхні і турбулентнага перамешвання паветра. Пад’ём паветра, неабходны для ўтварэння воблакаў, адбываецца пры канвекцыі ў атмасферы (канвекцыйныя воблакі), пры ўзыходзячым слізгальным пад’ёме паветра на франтах атмасферных (франтальныя воблакі), пры хвалевых рухах у атмасферы і інш. Большая ч. воблакаў засяроджана ў трапасферы, але зрэдку назіраюцца ў стратасферы (пераважна перламутравыя воблакі) і ў мезасферы (серабрыстыя воблакі). Па міжнар. класіфікацыі воблакі ў залежнасці ад іх ніжняй мяжы адносяцца да аднаго з трох ярусаў — верхняга, сярэдняга або ніжняга. Паводле знешняй будовы і размяшчэння на ярусах воблакі маюць 10 асн. формаў: у верхнім ярусе перыстыя воблакі, перыста-слаістыя воблакі і перыста-кучавыя воблакі (на выш. больш за 6 км), у сярэднім — высокакучавыя воблакі і высокаслаістыя воблакі (на выш. 2—6 км), у ніжнім — слаіста-кучавыя воблакі, слаістыя воблакі і слаіста-дажджавыя воблакі (выш. іх ніжняй мяжы менш за 2 км). Вылучаюць таксама воблакі вертыкальнага развіцця — кучавыя воблакі і кучава-дажджавыя воблакі з вертыкальнымі памерамі аднаго парадку з гарызантальнымі, іх асновы звычайна знаходзяцца ў ніжнім ярусе, а верхнія ч. могуць дасягаць сярэдняга ці верхняга яруса. Воблакі ўкрываюць каля паловы нябеснай сферы на Зямлі і змяшчаюць каля 10​9 т вады. На працягу года розныя тыпы воблакаў маюць розную паўтаральнасць. Воблакі ўплываюць на фарміраванне надвор’я і ападкаў, на цеплавы рэжым паветра, сушы і мора, з’яўляюцца звяном кругавароту вады на Зямлі. Яны могуць перамяшчацца на тысячы кіламетраў, пераносіць і пераразмяркоўваць вялізныя масы вады. На Беларусі зімой пераважае нізкая воблачнасць слаістых формаў, у цёплае паўгоддзе — воблачнасць вертыкальнага развіцця.

І.Я.Афнагель.

т. 4, с. 245

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

уда́р в разн. знач. уда́р, -ру м.;

нанести́ уда́р нане́сці ўдар;

одни́м уда́ром адны́м уда́рам;

уда́ры ки́рок уда́ры кі́рак;

уда́р гро́ма уда́р гро́му;

перенести́ уда́р перане́сці ўдар;

отве́тить уда́ром на уда́р адказа́ць уда́рам на ўдар;

уда́р попа́л в цель прям., перен. уда́р тра́піў у цэль;

апоплекси́ческий уда́р мед. апаплексі́чны ўдар;

штрафно́й уда́р спорт. штрафны́ ўдар;

уда́р пу́льса уда́р пу́льсу;

фронта́льный уда́р воен. франта́льны ўдар;

теплово́й уда́р цеплавы́ ўдар;

со́лнечный уда́р со́нечны ўдар;

находи́ться под уда́ром знахо́дзіцца пад уда́рам;

уда́р в спи́ну уда́р у спі́ну;

одни́м уда́ром двух за́йцев уби́ть адны́м уда́рам двух зайцо́ў забі́ць;

уда́р судьбы́ уда́р лёсу;

в уда́ре у настро́і (у гумо́ры).

Руска-беларускі слоўнік НАН Беларусі, 10-е выданне (2012, актуальны правапіс)

ГЕЛІЯТЭ́ХНІКА (ад гелія... + тэхніка),

галіна тэхнікі, якая займаецца распрацоўкай тэарэт. асноў, практычных метадаў і тэхн. сродкаў пераўтварэння энергіі сонечнай радыяцыі ў інш. віды энергіі. Выкарыстоўвае розныя спосабы пераўтварэння сонечнай энергіі: цеплавы (ажыццяўляецца ў сонечных печах, сонечных воданагравальніках, апрасняльніках, сушылках, цяпліцах і інш.), фотаэлектрычны (у сонечных батарэях), тэрмаэлектрычны (у сонечных тэрмаэлектрычных генератарах), тэрмаэмісійны (у тэрмаэмісійных пераўтваральніках энергіі). Паводле рабочых т-р геліятэхніка падзяляецца на высока- (да 3000—3500 °C) і нізкатэмпературную (100—200 °C).

Паток сонечнай радыяцыі «дармавы» і невычэрпны, яго шчыльнасць на ўзроўні мора прыкладна 1 кВт/м² (у геліятэхн. разліках 0,815 кВт/м²). Спробы выкарыстання гэтага выпрамянення рабіліся яшчэ ў старажытнасці, аднак практычнага значэння не мелі. У 1770 Х.Б. дэ Сасюр (Швейцарыя) пабудаваў геліяўстаноўку тыпу «гарачая скрыня». Як асобная галіна тэхнікі геліятэхніка развіваецца з 2-й пал. 19 ст., калі былі створаны доследныя ўзоры паветраных і паравых сонечных рухавікоў (Францыя, Швецыя, ЗША). У Расіі ў 1890 В.К.Цэраскі правёў эксперыменты па плаўцы розных металаў у фокусе парабалічнага люстэрка. У 1912 каля Каіра (Егіпет) пабудавана сонечная энергетычная ўстаноўка магутнасцю каля 45 кВт. У 1930-я г. распрацаваны метады разліку геліяўстановак для атрымання эл. энергіі, апраснення вады, сушкі і інш. Даследаванні па прамым пераўтварэнні прамянёвай энергіі ў электрычную пашырыліся ў сувязі з асваеннем касм. прасторы. Значнае развіццё геліятэхніка атрымала ў Францыі, ЗША, Японіі, ПАР, Аўстраліі, Германіі, з краін СНД — у Расіі, Арменіі, Туркменіі, Узбекістане. Выкарыстанне сродкаў геліятэхнікі найб. эфектыўнае ў шыротах са значнай сонечнай радыяцыяй для энергазабеспячэння малаэнергаёмістых разгрупаваных спажыўцоў. У сувязі са збядненнем традыц. крыніц энергіі яны перспектыўныя і ў рэгіёнах з умераным кліматам, напр., геліятэхніка развіваецца ў Канадзе, Даніі, Швецыі. Павышэнне эфектыўнасці геліясістэм і пераадоленне прынцыповых недахопаў (невысокая шчыльнасць і няўстойлівасць сонечнай энергіі) забяспечваюцца значнымі памерамі паверхні, якая ўлоўлівае сонечную радыяцыю, яе канцэнтрацыяй на паверхні геліяпераўтваральніка, акумуляваннем цеплавымі, эл., хім. і інш. акумулятарамі. У адпаведнасці з гэтымі патрабаваннямі ствараецца шырокі спектр геліяўстановак рознага прызначэння.

На Беларусі даследаванні і распрацоўкі сродкаў і элементнай базы геліятэхнікі вядуцца з 1980-х г. у Акад. навук. комплексе «Ін-т цепла- і масаабмену імя А.В.Лыкава» (АНК ІЦМА), Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН Беларусі, Цэнтр. НДІ механізацыі і электрыфікацыі сельскай гаспадаркі і інш. У АНК ІЦМА створаны доследныя ўзоры калектараў сонечнай энергіі на цеплавых трубах (разам з Армянскім аддз. Усесаюзнага НДІ крыніц току), распрацаваны праект «Сядзіба 21 стагоддзя», у энергабалансе якога значная роля сонечнай энергіі, розныя тыпы геліяцеплапераўтваральных сістэм — геліяводападагравальнікі магутнасцю 0,4—100 кВт, сонечныя радыятары (абагравальнік, сонечныя кухня, цяпліца, сушылка і інш.). Асвоены выпуск геліямодуляў, аснашчаных бакам-акумулятарам (захоўвае цяпло на працягу тыдня).

Літ.:

Драгун В.Л., Конев С.В. В мире тепла. Мн., 1991;

Мак-Вейг Д. Применение солнечной энергии: Пер. с. англ. М., 1981.

У.Л.Драгун, С.У.Конеў.

т. 5, с. 141

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)