сіла, што дзейнічае на рухомую зараджаную часціцу ў эл.магн. полі; адно з важнейшых паняццяў электрадынамікі. Матэматычна вызначана Х.А.Лорэнцам у выніку абагульнення эксперым. даных.
Вызначаецца формулай:
, дзе q — зарад часціцы, — напружанасць эл. поля, — магн. індукцыя, — скорасць часціцы адносна сістэмы каардынат, дзе вызначаны велічыні , і . Першы член у правай частцы формулы абумоўлены эл. полем, другі — магн. полем. Магн. частка Л.с. падобная на Карыяліса сілу ў механіцы: дзейнічае на рухомы зарад перпендыкулярна яго скорасці — захоўвае пастаяннай энергію зараду і змяняе толькі напрамак яго імпульсу. Гл. таксама Гальванамагнітныя з’явы, Тэрмамагнітныя з’явы.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
НЕЙТРО́ННАЕ ВЫПРАМЯНЕ́ННЕ,
ядзернае выпрамяненне, якое складаецца з патокаў нейтронаў. Асн. крыніца нейтронаў розных энергій — ядзерны рэактар. Характар узаемадзеяння нейтронаў з рэчывам залежыць ад іх энергіі і складу рэчыва, што апрамяняецца. З-за адсутнасці эл.зараду нейтроны пранікаюць у рэчыва на значную глыбіню. Н.в. адносяць да шчыльнаіанізавальных выпрамяненняў, таму што пратоны, якія яно ўтварае, моцна іанізуюць рэчыва. Атамныя ядры пры паглынанні нейтронаў распадаюцца на моцнаіанізавальныя пратоны, α часціцы і фатоны γ выпрамянення, таксама здольныя ўтвараць іанізацыю (другасную). Пры такіх ядзерных рэакцыях могуць узнікаць радыеактыўныя ізатопы элементаў і наведзеная радыеактыўнасць, якая таксама выклікае іанізацыю. Канчаткова біял. эфект пры Н.в. звязаны з іанізацыяй, што ўтвараецца другаснымі часціцамі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
КУЛО́Н ((Coulomb) Шарль Агюстэн) (14.6.1736, г. Ангулем, Францыя — 23.8.1806),
французскі інжынер і фізік, адзін з заснавальнікаў электрастатыкі і магнітастатыкі. Чл. Парыжскай АН (1803). Скончыў школу ваен. інжынераў (1761). Навук. працы па электрычнасці, магнетызме і дастасавальнай механіцы. Сфармуляваў законы сухога трэння (1781). Даследаваў дэфармацыю кручэння ніцей, устанавіў законы пругкага кручэння. Вынайшаў (1784) круцільныя вагі, з дапамогай якіх устанавіў у 1785 асн. законы электрастатыкі (Кулона закон), пашырыў яго на ўзаемадзеянне засяроджаных магнітных полюсаў і сканструяваў магнітометр (1785—88). Яго імем названа адзінка эл.зарадукулон.
Літ.:
Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX в.). М., 1989. С. 242—252.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАЛЬВАНО́МЕТР (ад гальвана... + ...метр),
высокаадчувальная электравымяральная прылада, прызначаная для вымярэння малых токаў і напружанняў. Бывае пастаяннага і пераменнага току, са стрэлачным або светлавым паказальнікам (люстраны гальванометр, у якога на рухомай частцы гальванометра замест стрэлкі прымацавана мініяцюрнае люстэрка). Найб. пашырана выкарыстанне гальванометра для выяўлення адсутнасці току ці нулявой рознасці патэнцыялаў паміж якімі-н. пунктамі ланцуга (нуль-індыкатар). Пры праходжанні праз рамку гальванометра кароткачасовых імпульсаў атрымліваюцца балістычныя адхіленні рухомай часткі гальванометра ад нулявога становішча з наступным вяртаннем у яго пасля некалькіх ваганняў. Пры гэтым першае (максімальнае) адхіленне прапарцыянальнае працёкламу зараду. Для вымярэняў працяглых імпульсаў штучна павялічваюць момант інерцыі рухомых частак гальванометра (балістычны). Папярэднік гальванометра — гальванаскоп (для вызначэння наяўнасці току ў эл. ланцугу і яго напрамку).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
до́сыць, прысл.
1. Столькі, колькі патрэбна; дастаткова, даволі. Чаго жадаць яшчэ? Чаго хацець? Ёсць хлеба досыць.З. Астапенка.[Віктар] мае досыць цвёрдасці, каб выканаць самому ўскладзены на яго партыяй абавязак.Зарэцкі./безас.узнач.вык.У нас усяго досыць.//безас.узнач.вык. Выражае загад, патрабаванне спыніць што‑н. Трэба растапіць абавязкова Мёртвы лёд халоднае вайны. Хай грыміць над светам наша слова: — Досыць трэсці бомбамі, паны!Смагаровіч.— Хлопцы, досыць спаць!Нікановіч.
2.(успалучэннізпрым.абопрысл.). Значна, у значнай ступені, даволі. Вёска была досыць вялікая, цягнулася ў адну лінію.Колас.Пасля жахлівага выбуху толавага зараду Антон Сафронавіч трохі недачуваў і з гэтай прычыны гаварыў досыць гучна.Паслядовіч.
Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)
ГІПЕРЗАРА́Д,
характарыстыка элементарных часціц, роўная падвоенаму сярэдняму эл.зараду часціцы ў ізатапічным мультыплеце (гл.Ізатапічная інварыянтнасць). Адрозніваюць моцны і слабы гіперзарад.
Моцны гіперзарад вызначаецца алг. сумай усіх унутраных квантавых лікаў часціцы і выкарыстоўваецца для апісання прыблізнай ізатапічнай інварыянтнасці адронаў. У розных рэакцыях элементарных часціц моцны гіперзарад амаль што захоўваецца, парушэнні яго захавання звязаны з уплывам электрамагнітнага ўзаемадзеяння. Слабы гіперзарад вызначае інтэнсіўнасць электраслабага ўзаемадзеяння элементарных ферміёнаў з нейтральным прамежкавым базонам і з’яўляецца крыніцай поля гэтага базона. Значэнні слабага гіперзараду, атрыманыя эксперыментальна, пакуль што не паддаюцца тлумачэнню. Напр., левыя нейтрына і электрон маюць слабы гіперзарад, роўны -1/2, правы электрон -1, левыя u- і d-кваркі + 1/6, правыя u- і (d-кваркі -2/3 і -1/3 адпаведна (гл.Кваркі).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГРЫ́НА ФУ́НКЦЫЯ,
функцыя, звязаная з інтэгральным выяўленнем рашэнняў краявых задач для дыферэнцыяльных ураўненняў. Апісвае вынік уздзеяння кропкавай (засяроджанай) крыніцы сілы, зараду ці інш. (функцыя крыніцы) або распаўсюджванне палёў ад кропкавых крыніц (функцыя распаўсюджвання, напр., патэнцыял поля кропкавага эл. зарада, размешчанага ўнутры заземленай праводнай паверхні). Названа ў гонар Дж.Грына. Грына функцыя і яе аналагі выкарыстоўваюцца ў тэорыі функцый, канечна-рознасных ураўненняў, тэарэт. фізіцы, квантавай тэорыі поля, стат. фізіцы і інш.
Грына функцыя зводзіць вывучэнне ўласцівасцей дыферэнцыяльнага аператара да вывучэння ўласцівасцей адпаведнага інтэгральнага аператара, дае магчымасць знаходзіць рашэнні неаднароднага ўраўнення, трактуецца як фундаментальнае рашэнне лінейнага дыферэнцыяльнага ўраўн., якое адпавядае аднародным краявым умовам, і г.д.Напр., поле, створанае сістэмай крыніц (у т. л. працяглымі крыніцамі), апісваецца ў выглядзе лінейнай камбінацыі (суперпазіцыі) уплываў асобных крыніц. Гл. таксама Ураўненні матэматычнай фізікі.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЗАХАВА́ННЯ ЗАКО́НЫ,
фізічныя заканамернасці, якія ўстанаўліваюць пастаянства ў часе пэўных велічынь, што характарызуюць фіз. сістэму ў працэсе змены яе стану; найб. фундаментальныя заканамернасці прыроды, якія вылучаюць самыя істотныя характарыстыкі фіз. сістэм і працэсаў. Асаблівае значэнне З.з. звязана з тым, што дакладныя дынамічныя законы, якія поўнасцю апісваюць фіз. сістэмы, часта вельмі складаныя ці невядомыя. У гэтых выпадках З.з. даюць магчымасць зрабіць істотныя вывады пра паводзіны і ўласцівасці сістэмы без рашэння ўраўненняў руху.
З.з. для энергіі, імпульсу, моманту імпульсу і эл.зараду выконваюцца ў кожнай ізаляванай сістэме (універсальныя законы прыроды). Пасля стварэння адноснасці тэорыі страціў сваё абсалютнае значэнне З.з. масы (гл.Дэфект мас)\ З.з. энергіі і імпульсу аб’яднаны ў агульны З.з. энергіі—імпульсу; удакладнена фармулёўка З.з. поўнага моманту імпульсу (з улікам спіна). Асабліва важная роля З.з. у тэорыі элементарных часціц, дзе ёсць шэраг абсалютных (для электрычнага, барыённага і лептоннага зарадаў) і прыблізных (для ізатапічнага спіна, дзіўнасці і інш.) З.з., якія выконваюць толькі пры некат. умовах. Напр., дзіўнасць захоўваецца ў моцных, але парушаецца ў слабых узаемадзеяннях (гл.Адроны, Барыёны, Лептоны, Узаемадзеянні элементарных часціц). З.з. ў тэорыі элементарных часціц — асн. сродак вызначэння магчымых рэакцый паміж часціцамі. Існуе глыбокая сувязь паміж З.з. і сіметрыяй фіз. сістэм (гл.Сіметрыя, Нётэр тэарэма). Наяўнасць характэрнай для кожнага тыпу фундаментальных узаемадзеянняў дынамічнай (калібровачнай) сіметрыі прыводзіць да З.з. сілавых (дынамічных) зарадаў, якія вызначаюць здольнасць элементарных часціц да адпаведнага ўзаемадзеяння. З.з. эл.зараду, слабых ізатапічнага спіна і гіперзараду, каляровых (моцных) зарадаў выкарыстоўваюцца пры пабудове палявых (калібровачных) тэорый электрамагнітнага, электраслабага і моцнага ўзаемадзеянняў адпаведна. У квантавай тэорыі поля ўведзены спецыфічныя З.з. прасторавай, часавай і зарадавай цотнасцей, што вызначаюць уласцівасці тэорыі адносна пераўтварэнняў адпаведнай дыскрэтнай сіметрыі (гл.Людэрса—Паўлі тэарэма).
Літ.:
Фейнман Р. Характер физических законов: Пер. с англ.М., 1968;
Богуш А.А. Очерки по истории физики микромира. Мн., 1990.
2. Сканцэнтраванне намаганняў, затрата вялікай энергіі, сіл для ажыццяўлення чаго‑н. Рабіць без напружання. Нервовае напружанне. Творчае напружанне. □ Шкада было матораў.. машын, шкада было шафёраў, рукі якіх дранцвелі ад напружання.Кулакоўскі.Працоўнае напружанне на палях не спадае ні на адзін дзень.«Звязда».// Крайняя ступень працякання чаго‑н. Трымаць усіх у напружанні. Трывожнае напружанне. □ Відаць, сход дайшоў да самага высокага напружання.Дуброўскі.
3. Ненатуральнае становішча, нацягнутасць. Вострае напружанне міжнародных падзей.
4.Спец. Велічыня ціску або расцяжэння, якія ўзнікаюць у цвёрдым целе ў выніку знешняга ўздзеяння (сіл, тэмпературы і пад.).
5.Спец. Велічыня, якая характарызуе работу электрычных сіл пры перамяшчэнні электрычнага зараду. Электрычнае напружанне ў адзін вольт. Ток высокага напружання.
Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)
НЕАБАРАЧА́ЛЬНЫ ПРАЦЭ́С,
фізічны працэс, які можа самаадвольна працякаць толькі ў адным пэўным напрамку. У адрозненне ад абарачальных працэсаў Н.п. выключае магчымасць вяртання тэрмадынамічнай сістэмы ў зыходны стан без якіх-н. істотных змен у навакольным асяроддзі. Усе Н.п. з’яўляюцца нераўнаважнымі працэсамі і з мікраскапічнага пункту гледжання вывучаюцца ў фіз. кінетыцы; тэрмадынаміка ўстанаўлівае для іх толькі няроўнасці, якія паказваюць магчымы напрамак працякання працэсу (гл.Другі закон тэрмадынамікі).
Да Н.п. адносяць дыфузію, цеплаправоднасць, вязкае цячэнне, хім. рэакцыі, рэлаксацыйныя і інш. працэсы, дзе адбываецца накіраваны прасторавы перанос рэчыва, энергіі, імпульсу, зараду. У замкнутых сістэмах Н.п. заўсёды суправаджаюцца ўзрастаннем энтрапіі (крытэрый неабарачальнасці; гл.Больцмана прынцып). У адкрытых сістэмах пры Н.п. энтрапія можа заставацца пастаяннай ці змяншацца за кошт абмену з навакольным асяроддзем, аднак ва ўсіх выпадках вытв-сць энтрапіі (яе ўзрастанне ў адзінку часу за кошт Н.п.) застаецца дадатнай.