ВІТЭ́ЛА, Вітэлій (Witelo, Vittelio) Эразм (каля 1230, каля г. Вроцлаў, Польшча — каля 1280), польскі прыродазнавец і філосаф. Вучыўся ў Парыжы і Падуі. Філасофію трактаваў як своеасаблівую навуку аб прыродзе, яго навук. дзейнасць звязана з развіццём эмпірычнага прыродазнаўства, пачатак якому дала оксфардская школа. Аўтар вядомага ў сярэднія вякі трактата па оптыцы «Перспектыва» (1270—73), тройчы выдадзенага ў Нюрнбергу (1535, 1551, 1572). У гэтым творы выкладаюцца элементы геам. оптыкі, вядомыя Эўкліду, Пталамею і Альхазену, а таксама прыводзіцца закон абарачальнасці прамянёў пры пераламленні святла, даказваецца, што парабалічныя люстэркі маюць адзін фокус, разглядаюцца будова вока і ўласцівасці зроку, тлумачыцца прырода вясёлкі на аснове пераламлення святла ў вадзяных кроплях.

Н.К.Мазоўка.

т. 4, с. 206

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРЦЫМО́ВІЧ Леў Андрэевіч

(25.2.1909, Масква — 1.3.1973),

сав. фізік. Акад. АН СССР (1953, чл.-кар. з 1946), праф. (1947). Герой Сац. Працы (1969). Скончыў БДУ (1928). З 1930 у фізіка-тэхн. ін-це, з 1944 у Ін-це атамнай энергіі, з 1957 акад.-сакратар Аддз. агульнай фізікі і астраноміі АН СССР. Навук. працы ў галіне атамнай і ядз. фізікі, электроннай оптыкі, фізікі плазмы. Даказаў выкананне закону захавання імпульсу пры анігіляцыі электрона і пазітрона, распрацаваў эл.-магн. метад раздзялення ізатопаў, упершыню атрымаў тэрмаядз. рэакцыю ва ўстойлівай квазістацыянарнай плазме (у сааўт.). Ленінская прэмія 1958. Дзярж. прэміі СССР 1953, 1971.

Тв.:

Избр. труды. М., 1978.

Літ.:

Академик Л.А.Арцимович: (Сб. статей). М., 1975.

т. 1, с. 535

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАНЧАРЭ́НКА Андрэй Маркавіч

(н. 2.1.1933, в. Версанка Крупскага р-на Мінскай вобл.),

бел. фізік. Акад. АН Беларусі (1984, чл.-кар. 1972), д-р фізіка-матэм. н. (1972), праф. (1974). Засл. дз. нав. Беларусі (1978). Скончыў БДУ (1956). З 1959 у Ін-це фізікі, з 1970 нам. дырэктара ін-та і кіраўнік Магілёўскага аддз. Ін-та фізікі, у 1987—97 гал. вучоны сакратар Прэзідыума, адначасова з 1991 дырэктар Аддзела антычных аптычных праблем інфарматыкі АН Беларусі. Навук. працы ў галіне фіз. і інтэгральнай оптыкі, квантавай і аптычнай электронікі. Распрацаваў тэорыю дыэлектрычных хваляводаў і святлаводаў, тэорыю анізатропных рэзанатараў аптычных квантавых генератараў. Дзярж. прэмія Беларусі 1984.

Тв.:

Гауссовы пучки света. Мн., 1977;

Основы теории оптических волноводов. Мн., 1983 (разам з В.А.Карпенкам).

Літ.:

А.М. Ганчарэнка // Весці АН Беларусі. Сер. фіз.-матэм. навук 1993. № 1.

М.У.Токараў.

т. 5, с. 35

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЮ́ЙГЕНСА—ФРЭНЕ́ЛЯ ПРЫ́НЦЫП,

асноўны прынцып хвалевай оптыкі, які дае магчымасць вызначаць амплітуду (інтэнсіўнасць) хвалі ў кожным пункце, калі вядомыя яе амплітуда і фаза на якой-н. адвольнай паверхні. Першапачаткова сфармуляваны К.Гюйгенсам (1690), развіты з улікам інтэрферэнцыі А.Ж.Фрэнелем (1818), строгую матэм. фармулёўку Гюйгенса—Фрэнеля прынцыпу даў Г.Р.Кірхгоф (1882).

Паводле Гюйгенса—Фрэнеля прынцыпу кожны пункт хвалевай паверхні (фронту хвалі), якой у дадзены момант дасягнула светлавая хваля, з’яўляецца цэнтрам другасных (фіктыўных) кагерэнтных хваль, агінальная якіх у кожны наступны момант часу вызначае новую хвалевую паверхню. Інтэнсіўнасць святла ў пункце назірання вызначаецца вынікам інтэрферэнцыі другасных хваль. Пры гэтым амплітуда другасных хваль залежыць ад вугла паміж нармаллю да хвалевай паверхні ў цэнтры другаснай хвалі і напрамкам на пункт назірання. Гюйгенса—Фрэнеля прынцып выкарыстоўваецца пры рашэнні дыфракцыйных задач. Гл. таксама Дыфракцыя святла, Інтэрферэнцыя святла.

А.І.Болсун.

т. 5, с. 554

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АФТАЛЬМАЛО́ГІЯ

(ад грэч. ophthalmos вока + ...логія),

галіна медыцыны, якая вывучае анатомію і фізіялогію органа зроку, хваробы вачэй, распрацоўвае метады іх дыягностыкі, лячэння і прафілактыкі.

Першыя звесткі пра хваробы вачэй ёсць у стараж.-егіп. пісьмовых помніках, у працах Гіпакрата, індыйскіх і кітайскіх медыкаў. Як самаст. навука афтальмалогія пачала фарміравацца ў 17 ст. з развіццём оптыкі. Яе развіццю спрыяла вынаходства ням. вучоным Г.Гельмгольцам вочнага люстэрка (афтальмаскопа, 1851). Да сярэдзіны 19 ст. належаць і даследаванні ў галіне фізіял. оптыкі, стварэнне вучэнняў пра рэфракцыю і акамадацыю вока. У Расіі першая кафедра вочных хвароб заснавана ў 1818, вочныя лячэбніцы ў Пецярбургу і Маскве — у 1824—26. Уклад у афтальмалогію зрабілі рас. вучоныя А.У.Іваноў, А.А.Крукаў, А.М.Маклакоў, Л.Г.Белярмінаў, М.І.Авербах, В.П.Адзінцоў, У.П.Філатаў (першы ў свеце распрацаваў хірург. метад перасадкі рагавіцы). У наш час у практыку ўвайшлі лазерная хірургія, вочныя аперацыі пад мікраскопам (укаранёны М.Л.Красновым, А.П.Несцеравым і інш., распрацоўваюцца ў Міжгаліновым навук.-тэхн. комплексе «Мікрахірургія вока» пад кіраўніцтвам С.М.Фёдарава). Сярод работ замежных афтальмолагаў найбольш вядомы працы па пытаннях патагенезу, клініцы і лячэнні глаўкомы (С.Дзьюк-Элдэр, Вялікабрытанія; Б.Бекер, ЗША; Р.Эцьен, Францыя), праблемах захворванняў сятчаткі вока (М.Газ, ЗША), выкарыстанні крыяхірургіі ў афтальмалогіі (Т.Крвавіч, Польшча).

На Беларусі даследаванні па афтальмалогіі пачаліся з 2-й пал. 19 ст. Сучасны этап развіцця афтальмалогіі звязаны з працамі Т.В.Бірыч і яе вучняў: Т.А.Бірыч, Г.Р.Васільева, Д.В.Кантар і інш. (распрацоўкі ў галіне крыяхірургіі вочных захворванняў, глаўкомы, апёкаў вачэй і інш.). Н.-д. работа вядзецца ў Бел. ін-це ўдасканалення ўрачоў, Бел. НДІ экспертызы працы інвалідаў, на кафедрах вочных хвароб мед. ін-таў. Распрацоўваюцца пытанні лячэння і прафілактыкі траўмаў органа зроку, дыягностыкі і лячэння вочных хвароб (М.С.Завадская, М.М.Залатарова, А.У.Васілевіч, І.І.Катлярова, К.І.Клюцавая, І.В.Морхат, У.Т.Парамей, К.І.Чвялёва, Л.К.Яхніцкая). Асн. сучасныя кірункі даследаванняў: распрацоўка і ўкараненне мікрахірург. тэхнікі лячэння хвароб і траўмаў органа зроку, лазерная хірургія, дыягностыка і лячэнне вірусных захворванняў вачэй, пытанні прафілактыкі і лячэння блізарукасці, уздзеяння малых дозаў радыяцыі на орган зроку.

Літ.:

Бирич Т.В. Применение низких температур в офтальмологии. Мн., 1984;

Золотарева М.М. Избранные разделы клинической офтальмологии. Мн., 1973;

Клюцевая Е.И. Хирургическое лечение прогрессирующей близорукости. Мн., 1984.

Л.К.Яхніцкая.

т. 2, с. 142

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНАЯ ПРЫЛА́ДА вымяральная, прылада, прынцып дзеяння якой заснаваны на выкарыстанні эл.-магн. хваляў аптычнага дыяпазону. З дапамогай аптычнай прылады вымяраюць лінейныя і вуглавыя памеры, некаторыя фіз. велічыні, параўноўваюць форму вырабу ці стан апрацаваных паверхняў з эталонам. Адрозніваюць рабочыя (для практычных вымярэнняў) і ўзорныя, па якіх вывяраюць рабочыя аптычныя прылады.

Асноўная частка аптычнай прылады — аптычная сістэма з лінзаў, люстэркаў, прызмаў і інш., прызначаных для ўтварэння відарысаў прадметаў на сятчатцы вока, экране і інш. або перадачы светлавой энергіі. Для іх разліку карыстаюцца формуламі геам. оптыкі. Канструкцыя прылады абумоўлена метадам вымярэнняў. Паводле прынцыпу дзеяння аптычнай прылады бываюць з аптычным візіраваннем і мех. (электронным або інш. неаптычным) адлікам перамяшчэння пунктаў кантакту з аб’ектам вымярэння (праектары, інстр. мікраскопы, праекцыйныя насадкі), аптычным візіраваннем і аптычным адлікам перамяшчэння (вымяральныя мікраскопы, інтэрферэнцыйныя кампаратары), з мех. кантактам з аб’ектам вымярэння і аптычным адлікам перамяшчэння (аптыметры, кантактныя інтэрферометры, аптычныя даўжынямеры). Выкарыстоўваюцца ў машына- і прыладабудаванні, геадэзіі і інш.

т. 1, с. 438

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДБІЦЦЁ СВЯТЛА́,

частковае ці поўнае вяртанне ў першае асяроддзе светлавога патоку, які падае на мяжу двух асяроддзяў з рознымі паказчыкамі пераламлення. Адбівальная здольнасць цела залежыць ад аптычных уласцівасцяў сумежных рэчываў, даўж. хвалі λ святла, якое падае, і якасці адбівальнай паверхні.

Калі няроўнасці паверхні падзелу меншыя за λ, наглядаецца люстраное адбіццё святла. Пры гэтым выконваюцца 2 законы адбіцця святла: адбіты прамень S′ ляжыць у адной плоскасці з праменем S, што падае, і перпендыкулярам ON да адбівальнай паверхні ў пункце падзення; вугал адбіцця Z′ роўны вуглу падзення α (рыс. 1). Калі няроўнасці адбівальнай паверхні большыя за λ, святло адбіваецца па ўсіх напрамках у межах паўсферы — дыфузнае адбіццё (рыс. 2). У 1954 Ф.І.Фёдаравым адкрыта з’ява перпендыкулярнага да плоскасці падзення зруху адбітага пучка святла (гл. Фёдарава зрух). Асобны выпадак адбіцця святла — поўнае ўнутранае адбіццё. Памяншэнне адбіцця святла дасягаецца прасвятленнем оптыкі; для павелічэння адбіцця на люстраныя паверхні наносяць метал. дыэлектрычныя пакрыцці. Гл. таксама Пераламленне святла.

Адбіццё святла: 1 — люстраное; 2 — дыфузнае.

т. 1, с. 97

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АРТАГАНА́ЛЬНАЯ СІСТЭ́МА,

1) мноства {xn} ненулявых вектараў у эўклідавай (гільбертавай) прасторы, для якіх скалярны здабытак (xn, xm) = 0 пры n ≠ m. Калі модуль кожнага вектара роўны 1, то сістэма {xn} наз. артанармоўнай. Поўную артаганальную сістэму наз. артаганальным базісам. Адпаведна вызначаецца і артанармоўны базіс.

2) Сістэма каардынатаў, у якой каардынатныя лініі (або паверхні) перасякаюцца пад прамым вуглом. Звычайна карыстаюцца дэкартавымі, палярнымі, эліптычнымі, сферычнымі, цыліндрычнымі артаганальнай сістэмай каардынатаў.

3) Сістэма мнагаскладаў {Pn(x)}, n = 0, 1, 2, ..., якія на адрэзку [a, b] з вагой g(x) задавальняюць умовам артаганальнасці ∫​ba Pn(x)Pm(x)g(x)dx = 0 /n≠m/, пры гэтым ступень кожнага мнагасклада Pn(x) супадае з яго індэксам n. Выкарыстоўваюцца ў задачах матэм. фізікі, тэорыі выяўленняў груп, вылічальнай матэматыкі і інш. 4) Сістэма функцый, n = 1, 2..., якія на адрэзку [a, b] з вагой p(x) задавальняюць умовам артаганальнасці: ∫​ba φn(x)φ*m(x)p(x)dz = 0 пры n≠m, дзе * — знак камплекснай спалучанасці. Напр., сістэма трыганаметр. функцый ½, cos nπx, sin nπx (n = 1, 2, ...) — артаганальная сістэма на адрэзку [-1,1] з вагой 1. Выкарыстоўваецца для рашэння задач, напр., спектральнага аналізу ў тэорыі ваганняў, акустыкі, радыёфізікі, оптыкі.

В.А.Ліпніцкі.

т. 1, с. 504

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ МЕХА́НІКА,

раздзел механікі, у якім рух сістэм матэрыяльных пунктаў (цел) даследуецца пераважна метадамі матэм. аналізу. Вывучае складаныя мех. сістэмы (машыны, механізмы, сістэмы часціц і інш.), рух якіх абмежаваны пэўнымі ўмовамі (гл. Сувязі механічныя).

Галаномная сістэма (мех. сувязі залежаць толькі ад каардынат і часу) у патэнцыяльным полі характарызуецца функцыяй Лагранжа L=T-U, дзе T — кінетычная і U — патэнцыяльная энергія сістэмы. Калі вядома канкрэтная залежнасць L=L(q,,t), дзе q — абагульненыя каардынаты, — абагульненыя скорасці, t — час, то пры дапамозе прынцыпу найменшага дзеяння можна знайсці дыферэнцыяльныя ўраўненні руху мех. сістэмы. Іх інтэграванне пры зададзеных пачатковых умовах дазваляе вызначыць закон руху сістэмы, г.зн. залежнасці qi=qi(t), дзе i=1, 2, ..., S, S — лік ступеняў свабоды.

Асн. Палажэнні аналітычнай механікі распрацаваў Ж.Лагранж (1788), значны ўклад зрабілі У.Гамільтан, М.В.Астраградскі, П.Л.Чабышоў, А.М.Ляпуноў, М.М.Багалюбаў, А.Ю.Ішлінскі і інш. Метады аналітычнай механікі далі магчымасць выявіць сувязь паміж асн. паняццямі механікі, оптыкі і квантавай механікі (оптыка-мех. аналогіі). Абагульненне варыяцыйных прынцыпаў механікі на неперарыўныя квантава-рэлятывісцкія сістэмы склала матэм. аснову тэорыі поля. Дасягненні аналітычнай механікі садзейнічалі развіццю балістыкі, нябеснай механікі, тэорыі ўстойлівасці, тэорыі аўтам. кіравання і інш.

Літ.:

Кильчевский Н.А. Курс теоретической механики. Т. 2. М., 1977.

А.І.Болсун.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛА́ЗЕРНАЯ ФІ́ЗІКА,

раздзел фізікі, у якім вывучаюцца працэсы генерацыі, узмацнення і распаўсюджвання лазернага выпрамянення, яго ўзаемадзеяння з рознымі асяроддзямі і аб’ектамі; фіз. асновы стварэння і выкарыстання лазераў частка квантавай электронікі.

Узнікла ў 1960-я г. на мяжы оптыкі, радыёфізікі, электронікі і матэрыялазнаўства. Атрымала хуткае развіццё з прычыны асаблівых якасцей лазернага промня: яго надзвычай высокіх кагерэнтнасці, монахраматычнасці, накіравальнасці распаўсюджвання, прасторавай і часавай шчыльнасці энергіі, вельмі малой працягласці асобных імпульсаў. Гэтыя якасці, іх спалучэнні і камбінацыі абумовілі развіццё лазернай тэхнікі — лазерных сродкаў даследавання розных асяроддзяў і аб’ектаў, выканання разнастайных лазерных тэхналогій, у т.л. тонкіх, стварэння аптычнай сувязі, апрацоўкі, запісу і счытвання інфармацыі (гл. Аптычны запіс). Выкарыстанне лазернага выпрамянення выклікала змены шэрагу паняццяў і ўяўленняў оптыкі і інш. галін ведаў. У выніку выкарыстання лазераў выяўлены і даследаваны такія нелінейна-аптычныя з’явы, як генерацыя гармонік, складанне і адыманне частот, вымушанае камбінацыйнае рассеянне, самафакусіроўка і тунэляванне лазернага пучка, чатырохфатоннае змешванне, двухфатоннае паглынанне, амплітудна-фазавая канверсія мадуляцыі, утварэнне салітонаў і інш. Нелінейна-аптычныя з’явы знайшлі шырокае выкарыстанне для кіравання характарыстыкамі лазернага выпрамянення (пры яго генерацыі і распаўсюджванні), вывучэння структуры рэчыва (гл. Лазерная спектраскапія) і дынамікі розных працэсаў у асяроддзях. У імпульсах лазернага выпрамянення фемтасекунднай (10 с) працягласці дасягнуты шчыльнасці магутнасці парадку 10​21 Вт/см2. Сілы ўздзеяння такіх імпульсаў на электроны і ядры атамаў істотна перавышаюць сілы іх узаемадзеяння ў ядрах, што дае магчымасць кіроўнага ўздзеяння на структуру атамаў і малекул. Лазерныя крыніцы выпрамянення выкарыстоўваюцца ў звычайных аптычных прыладах, што значна паляпшае іх характарыстыкі і пашырае магчымасці, і для стварэння прынцыпова новых прылад і метадаў даследавання, новых тэхн. сродкаў (аптычныя дыскі. лазерныя прынтэры, аудыё- і відэапрайгравальнікі, лініі валаконна-аптычнай сувязі, галаграфічныя і кантрольна-вымяральныя прылады). Дасягненні Л.ф. шырока выкарыстоўваюцца ў розных галінах навукі, прамысл. тэхналогіях, у ваен. тэхніцы, касманаўтыцы, медыцыне.

На Беларусі даследаванні па Л.ф. пачаліся ў 1961 у Ін-це фізікі АН пад кіраўніцтвам Б.І.Сцяпанава. Праводзяцца ў ін-тах фіз. і фізіка-тэхн. профілю Нац. АН Беларусі, установах адукацыі і прамысл. арг-цыях. Прадказана і атрымана генерацыя на растворах складаных малекул, створана серыя лазераў з плаўнай перастройкай частаты ў шырокім дыяпазоне; прапанаваны метады разліку і кіравання энергет., часавымі, частотнымі, палярызацыйнымі і вуглавымі характарыстыкамі лазераў і лазернага выпрамянення; створаны новыя тыпы лазерных крыніц святла агульнага і спец. прызначэння. Распрацаваны фіз. асновы дынамічнай галаграфіі, вывучаны заканамернасці ўзнікнення і працякання многіх нелінейна аптычных з’яў і распаўсюджвання святла ў нелінейна-аптычных асяроддзях.

Літ.:

Апанасевич П.А Основы теории взаимодействия света с веществом. Мн., 1977;

Коротеев Н.И., Шумай И.Л. Физика мощного лазерного излучения. М., 1991;

Ярив А. Введение в оптическую электронику: Пер. с англ. М., 1983;

Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.

П.А.Апанасевіч.

т. 9, с. 101

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)