ВІДАШУКА́ЛЬНІК,
прыстасаванне фота- і кіназдымачных апаратаў для навядзення іх на аб’ект і назірання за ім пры здымцы. Дазваляе ўбачыць межы відарысаў аб’ектаў і іх адпаведнасць памерам кадравай рамкі. Бывае рамачны, тэлескапічны і люстраны. Падбіраецца пад аб’ектыў з пэўнай фокуснай адлегласцю.
Калі аптычныя восі відашукальніка і здымачнага аб’ектыва не супадаюць, то ўзнікае паралакс — несупадзенне межаў відарыса, які назіраецца ў відашукальніку і які пераходзіць на фота- або кінаплёнку. Для змяншэння паралаксу ў поле зроку некаторых відашукальнікаў змяшчаюць некалькі прамавугольных рамак, што дазваляе ўвесці папраўку пры здымцы з розных адлегласцей. У люстраных фотаапаратах з адным здымачным аб’ектывам і кінаапаратах з люстраным абтуратарам паралакс адсутнічае. У некаторых фотаапаратах відашукальнік канструктыўна аб’яднаны з аптычным дальнамерам.
т. 4, с. 141
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
АПТЫ́ЧНЫ ДЫСК,
носьбіт інфармацыі ў выглядзе дыска, прызначаны для высакаякаснага запісу і ўзнаўлення гуку, відарыса, тэксту і інш. з дапамогай лазернага выпрамянення. Аснова аптычнага дыска — празрысты матэрыял (шкло, пластмаса і інш.), на які наносіцца рабочы слой, дзе пры лічбавым аптычным запісе ўтвараюцца мікраскапічныя паглыбленні (піты), што ў сукупнасці складаюць кальцавыя або спіральныя дарожкі. У параўнанні з традыц. спосабамі запісу і ўзнаўлення інфармацыі (мех., магн.) аптычныя дыскі маюць больш высокую шчыльнасць запісу (да 108 9> біт/см²), большую даўгавечнасць носьбіта з-за адсутнасці мех. кантакту паміж ім і счытвальным прыстасаваннем, меншы час доступу да інфармацыі (да 0,1 с).
Рабочы слой аптычнага дыска для аднаразовага запісу і шматразовага ўзнаўлення — лёгкаплаўкая плёнка таўшч. да 0,03 мкм. Пад уздзеяннем лазернага выпрамянення ў працэсе запісу адбываецца лакальнае расплаўленне або выпарэнне рабочага слоя. З такіх дыскаў з больш тоўстай плёнкай (да 0,15 мкм) робяць метал. матрыцу для стварэння дыскаў-копій (уласна аптычны дыск) метадам прасавання або ліцця пад ціскам. Напр., на дыск дыяметрам 356 мм можна запісаць ТВ-праграму працягласцю да 2 гадз. або стварыць пастаянную вонкавую памяць для ЭВМ аб’ёмам да 4 Гбайт, лічбавыя аптычныя грампласцінкі дыяметрам 120 мм (кампакт-дыскі) маюць працягласць гучання да 1 гадз. Кампакт-дыскі для пастаяннай вонкавай памяці ЭВМ змяшчаюць да 500 Мбайт інфармацыі. У рэверсіўных аптычных дысках, дзе шматразова (да 107 цыклаў) ажыццяўляецца запіс — узнаўленне — сціранне інфармацыі, рабочы слой з паўправадніковых або магнітааптычных матэрыялаў. Маюць дыяметр да 305 мм, аб’ём памяці да 2 Гбайт. Могуць замяняць стацыянарныя накапляльнікі ЭВМ вінчэстэрскага тыпу.
т. 1, с. 438
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
БІЯКАМУНІКА́ЦЫЯ
(ад бія... + камунікацыя),
сувязі паміж асобінамі аднаго або розных відаў жывёл, якія складаюцца праз перадачу і прыём сігналаў, што ўтвараюцца імі. Адрозніваюць сігналы спецыфічныя — хім., мех., аптычныя, акустычныя, эл. і інш. і неспецыфічныя, якія спадарожнічаюць жыццядзейнасці жывёл, успрымаюцца органамі зроку, слыху, нюху, смаку, дотыку, бакавой лініі, тэрма- і электрарэцэптарамі. Інфармацыя, якая паступае па розных каналах сувязі, перапрацоўваецца нерв. сістэмай, дзе фарміруецца рэакцыя арганізма ў адказ. Біякамунікацыя аблягчае пошукі ежы і спрыяльных умоў жыцця, ахову ад ворагаў і шкодных уздзеянняў, сустрэчу асобін рознага полу (асабліва ў перыяд размнажэння), узаемадзеянне дарослых і моладзі, фарміраванне груп (чарод, зграй, статкаў, калоній і інш.) і рэгуляцыю адносін паміж асобінамі ўнутры іх (тэр. паводзіны, іерархія і інш.). Кожны від жывёл мае свой арсенал біякамунікацыі, які перадаецца ў спадчыну.
т. 3, с. 169
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
АПАНАСЕ́ВІЧ Павел Андрэевіч
(н. 14.7.1929, в. Стараселле Докшыцкага р-на Віцебскай вобл.),
бел. фізік. Акад. (1984, чл.-кар. 1980) АН Беларусі. Засл. дз. нав. Беларусі (1955). Д-р фіз.-матэм. н. (1974), праф. (1977). Скончыў БДУ (1954). З 1955 у Ін-це фізікі АН Беларусі (з 1987 дырэктар). Навук. працы па оптыцы і лазернай фізіцы. Развіў тэорыю ўздзеяння магутнага выпрамянення на спектральна-аптычныя характарыстыкі атамаў і малекул, устанавіў шэраг заканамернасцяў узаемадзеяння патокаў святла ў розных асяроддзях, генерацыі звышкароткіх светлавых імпульсаў, вымушанага камбінацыйнага рассеяння. Распрацаваў шэраг метадаў нелінейнай спектраскапіі і кіравання параметрамі лазерных патокаў. Дзярж. прэмія Беларусі 1978. Дзярж. прэмія СССР 1982.
Тв.:
Таблицы распределения энергии и фотонов в спектре равновесного излучения. Мн., 1961 (разам з В.С.Айзенштатам);
Основы теории взаимодействия света с веществами. Мн., 1977.
т. 1, с. 417
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
ВЯРЧЭ́ННЕ ПЛО́СКАСЦІ ПАЛЯРЫЗА́ЦЫІ святла, паварот плоскасці палярызацыі лінейна палярызаванага святла пры праходжанні яго праз некаторыя рэчывы; від падвойнага праменепраламлення. Адбываецца ў аптычна актыўных ізатопах асяроддзя і ў актыўных крышталях (гл. Аптычная актыўнасць), а таксама ў неактыўных рэчывах пры дзеянні на іх знешняга магнітнага поля (гл. Фарадэя эфект).
Пры вярчэнні плоскасці палярызацыі ў асяроддзі ўзнікаюць 2 эл.-магн. хвалі, палярызаваныя па крузе ў процілеглых напрамках вярчэння, з аднолькавымі амплітудамі і рознымі скарасцямі. У выніку гэтага плоскасць палярызацыі сумарнай хвалі паступова паварочваецца. Вугал павароту залежыць ад таўшчыні, канцэнтрацыі, т-ры рэчыва і даўж. хвалі святла. Вярчэнне плоскасці палярызацыі выкарыстоўваецца для даследавання будовы рэчыва, пры вызначэнні канцэнтрацыі аптычна-актыўных рэчываў, а таксама ў некат. аптычных прыладах (аптычныя мадулятары, квантавыя гіраскопы і інш.). Гл. таксама Палярызацыя святла.
В.В.Валяўка.
т. 4, с. 398
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
ВАЛАКО́ННА-АПТЫ́ЧНАЯ СУ́ВЯЗЬ , сувязь, у якой перадача інфармацыі адбываецца з дапамогай эл.-магн. ваганняў аптычнага дыяпазону (1014 — 1015 Гц) і шкловалаконных святлаводаў; від аптычнай сувязі. Найб. перспектыўны кірунак развіцця тэлекамутацыйных сістэм і сетак. Адрозніваецца ад інш. відаў сувязі вял. колькасцю каналаў (вял. прапускная здольнасць), вял. скорасцю перадачы інфармацыі, высокай аховай ад эл.-магн. перашкод, нізкай імавернасцю памылак, малымі памерамі, масай і энергаспажываннем, прастатой мантажу і пракладкі.
Валаконна-аптычная сувязь дае магчымасць ствараць сеткі тэлекамунікацый з інтэграцыяй службаў (абмен рознымі відамі інфармацыі — тэлефаніі, даных ЭВМ, ПЭВМ, факсіміле; відэаінфармацыі, тэлебачання — у адной лічбавай сетцы). Валаконна-аптычныя лініі сувязі выкарыстоўваюцца ў кабельным тэлебачанні, выліч. тэхніцы, тэлефоннай і касм. сувязі, у сістэмах кантролю і кіравання тэхнал. працэсамі, медыцыне (дыягностыцы, хірургіі) і інш. Гл. таксама Валаконная оптыка.
Літ.:
Основы волоконно-оптической связи: Пер. с англ. М., 1980;
Волоконно-оптические системы передачи. М., 1992.
Я.В.Алішаў.
т. 3, с. 471
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
ВЫЛІЧА́ЛЬНАЯ МАШЫ́НА,
інструментальны сродак (або сукупнасць сродкаў) для апрацоўкі інфармацыі, у т. л. вылічэнняў, кіравання, рашэння задач. Бываюць мех., эл., электронныя, гідраўл., пнеўматычныя, аптычныя і камбінаваныя; у залежнасці ад формы выяўлення інфармацыі адрозніваюць аналагавыя вылічальныя машыны, лічбавыя вылічальныя машыны і гібрыдныя вылічальныя сістэмы.
Першы праект універсальнай «аналітычнай машыны» (гіганцкага арыфмометра з праграмным кіраваннем, арыфм. і запамінальным блокам), які, аднак, не быў поўнасцю рэалізаваны, распрацаваў англ. вынаходца і матэматык Ч.Бэбідж у 1883. Асн. ідэі праекта закладзены ў аснову работы сучаснай вылічальнай машыны: праграма вылічэнняў захоўваецца ў памяці машыны і выконваецца аўтаматычна. Развіццё электратэхнікі і радыёэлектронікі прывяло да стварэння ў 1930-я г. спецыялізаваных аналагавых вылічальных машын. Першыя электронныя вылічальныя машыны, заснаваныя на выяўленні інфармацыі ў лічбавай двайковай форме, распрацаваны ў 1940-я г. на аснове развіцця эл. пераключальных схем у аўтам. тэлеф. сувязі, электроннай кантрольна-вымяральнай апаратуры, радыёлакацыі. Гл. таксама Вылічальная машына «Мінск», Вылічальная тэхніка, Вылічальны цэнтр, Вылічальная сістэма.
Літ.:
Голубинцев В.О., Купаев В.М., Синельников Е.М. Эволюция универсальных ЦВМ. М., 1980.
М.П.Савік.
т. 4, с. 312
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
АПТЫ́ЧНАЯ СУ́ВЯЗЬ,
перадача інфармацыі з дапамогай эл.-магн. хваляў аптычнага дыяпазону (1014—1015 Гц). Першая лінія аптычнага тэлеграфа пабудавана ў 1794 паміж Парыжам і Лілем (225 км). Стварэнне лазераў, святлодыёдаў, фотапрыёмнікаў, валаконна-аптычных кабеляў з надзвычай малымі стратамі дало магчымасць стварыць аптычную сувязь, якая мае перавагу над інш. відамі сувязі па колькасці каналаў (вял. Прапускная здольнасць), ахове ад перашкод, далёкасці і хуткасці перадачы, па эканоміі металу (металу (медзі, алюмінію), па рэальнасці стварэння інтэгральных і інтэлектуальных сетак сувязі.
Для мадуляцыі лазернага выпрамянення ўздзейнічаюць на працэс яго генерацыі або выкарыстоўваюць мадулятар святла. На выхадзе перадатчыка фарміруецца вузкі маларазбежны прамень святла; трапляючы на ўваход прыёмніка, ён накіроўваецца на фотадэтэктар, дзе аптычнае выпрамяненне пераўтвараецца ў эл. сігнал, які ўзмацняецца і апрацоўваецца звычайнымі радыётэхн. Метадамі. Адрозніваюць аптычную сувязь з адкрытымі лініямі (для перадачы сігналаў праз атмасферу Зямлі ці касм. прастору) і з закрытымі святлаводнымі каналамі (валаконна-аптычныя лініі сувязі; выкарыстоўваюцца ў наземных і падводных умовах).
Літ.:
Алишев Я.В. Многоканальные системы передачи оптического диапазона. Мн., 1986;
Волоконно-оптические системы передачи. М., 1992.
Я.В.Алішаў.
т. 1, с. 438
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
АПТЫ́ЧНЫ РЭЗАНА́ТАР,
сістэма люстраных адбівальных паверхняў, у якой узбуджаюцца і падтрымліваюцца стаячыя ці бягучыя электрамагнітныя хвалі аптычнага дыяпазону. У адрозненне ад аб’ёмнага рэзанатара аптычны з’яўляецца адкрытым (няма бакавых сценак). Аптычны рэзанатар — адзін з важнейшых элементаў лазера. Асн. характарыстыка аптычнага рэзанатара — дыхтоўнасць (вызначае страты светлавой энергіі і характарызуе рэзанансныя ўласцівасці).
Прасцейшы аптычны рэзанатар — інтэрферометр Фабры—Перо, які складаецца з 2 плоскіх строга паралельных люстэркаў, што знаходзяцца на адлегласці L, значна большай за даўжыню хвалі λ. Калі паміж люстэркамі ўздоўж восі рэзанатара распаўсюджваецца плоская светлавая хваля, то ў выніку адбіцця ад люстэркаў і інтэрферэнцыі адбітых хваляў утвараецца стаячая хваля. Умова рэзанансу: L = q∙λ/2. дзе q — падоўжны індэкс ваганняў (колькасць паўхваляў, што ўкладаюцца ўздоўж восі аптычнага рэзанатара). У лазернай тэхніцы выкарыстоўваюцца канфакальныя рэзанатары, утвораныя сферычнымі люстэркамі, якія разнесены на адлегласць, роўную радыусу іх крывізны, а таксама кальцавыя аптычныя рэзанатары, што складаюцца з 3 і болей плоскіх або сферычных люстэркаў. У аптычным рэзанатары са сферычнымі люстэркамі ўзбуджаюцца таксама незалежныя бягучыя насустрач адна адной хвалі.
Літ.:
Ананьев Ю.А. Оптические резонаторы и проблема расходимости лазерного излучения. М., 1979.
В.В.Валяўка.
т. 1, с. 439
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова) 
АБ’ЕКТЫ́Ў,
аптычная сістэма або яе частка, якая стварае сапраўдны адваротны відарыс аб’екта. Створаны аб’ектывам відарыс разглядаецца праз акуляр (звычайна пасля абарачальнай сістэмы) ці фіксуецца на экране, фатагр. плёнцы, фотакатодзе перадавальнай тэлевізійнай трубкі і інш. Бываюць лінзавыя, люстраныя і люстрана-лінзавыя.
Асн. аптычныя характарыстыкі: фокусная адлегласць f; дыяметр уваходнай зрэнкі d; святласіла d/f; вугал (поле) зроку; раздзяляльная здольнасць. Аб’ектывы тэлескапічных сістэм маюць фокусную адлегласць да некалькіх метраў і дыяметр уваходнай зрэнкі ад некалькіх сантыметраў (у геад., вымяральных і падзорных трубах) да некалькіх метраў (у тэлескопах-рэфрактарах), аб’ектывы мікраскопаў — фокусную адлегласць 1,5—40 мм, малафарматных фотаапаратаў — 6—2000 мм (для аматарскай практыкі 28—200 мм). Фатагр. аб’ектывы бываюць нармальныя (вугал зроку 40—50°), шырокавугольныя (больш за 70°), звышшырокавугольныя (больш за 83°, аб’ектывы тыпу «рыбіна вока» больш за 180°), даўгафокусныя (менш за 39°) і звышдаўгафокусныя (менш за 9°). Канструкцыя складаных аб’ектываў дазваляе выправіць храматычную і геам. аберацыі аптычных сістэм. Большасць аб’ектываў — анастыгматы. Аб’ектывы з пераменнай фокуснай адлегласцю (панкратычныя), у якіх плоскасць відарыса і святласіла нязменныя, выкарыстоўваюцца ў кіна- і тэлекамерах, спец. прамянёвастойкія — у лазерных сістэмах. Для павелічэння фіз. святласілы аб’ектывы прасвятляюць (гл. Прасвятленне оптыкі).
В.В.Валяўка.
т. 1, с. 19
 Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)