АБМЕ́Н ЭНЕ́РГІІ, энергетычны абмен,

сукупнасць працэсаў утварэння, назапашвання, трансфармацыі і выкарыстання энергіі ў жывых арганізмах, а таксама працэсаў абмену паміж імі і навакольным асяроддзем. Абмен энергіі неадрыўны ад абмену рэчываў, карэліруе з яго ўзроўнем, мае фундаментальнае значэнне ў жыцці ўсіх арганізмаў. У аснове ўнутрыклетачнага абмену энергіі ляжыць акісленне біялагічнае арган. злучэнняў з назапашваннем і ператварэннем т.зв. макраэргічных сувязяў АТФ, крэацінфасфату, фосфаэнолпірувату, 3-фосфагліцэрату і інш. макраэргаў (гал. ролю пры гэтым выконвае цыкл трыкарбонавых кіслот). Зыходнымі вонкавымі крыніцамі для забеспячэння іх энергет. патрэб з’яўляецца энергія пажыўных і інш. рэчываў, што засвойваюцца арганізмам, і светлавая энергія, якая ўключаецца ў біяэнергет. абмен праз фотасінтэз. Ён забяспечвае існаванне не толькі раслін, але і ўсіх гетэратрофных арганізмаў. Гал. крыніцы энергіі ўнутры арганізма — вугляводы (даюць больш за 50% энергіі) і тлушчы. Праз ператварэнні рэчываў у арганізме ажыццяўляецца трансфармацыя хім. энергіі ў інш. віды — мех., цеплавую і інш.

Я.В.Малашэвіч.

т. 1, с. 31

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АПТЫ́ЧНАЯ ІЗАМЕРЫ́Я,

энантыямерыя, з’ява, абумоўленая здольнасцю рэчыва вярцець у розныя бакі плоскасць палярызацыі святла, што праходзіць праз рэчыва; від прасторавай ізамерыі. Звязана з існаваннем рэчыва ў дзвюх формах (лева- і прававярчальнай), якія наз. аптычнымі ізамерамі або аптычнымі антыподамі і ўзнікаюць у выніку асіметрыі (хіральнасці) малекулы.

Аптычныя ізамеры адносяцца адзін да аднаго як несіметрычны прадмет і яго люстраны адбітак; маюць ідэнтычныя фіз. і хім. ўласцівасці, акрамя аптычнай актыўнасці. Адзін ізамер верціць плоскасць палярызацыі святла ўлева [l- ці (-)-форма], другі — управа [d- ці (+)-форма). Дзве формы аднаго і таго ж рэчыва маюць люстрана процілеглыя канфігурацыі. Для вызначэння генетычнай сувязі рэчываў выкарыстоўваюць знакі L і D, якія сведчаць аб роднасці канфігурацыі аптычна актыўнага рэчыва з L- ці D-гліцэрынавым альдэгідам або адпаведна з L- ці D-глюкозай. Аптычныя антыподы (ізамеры), узятыя ў эквімалекулярнай колькасці, утвараюць аптычна неактыўны рацэмат.

Аптычную ізамерыю маюць прыродныя амінакіслоты, вугляводы, алкалоіды. Фізіял. і біяхім. дзеянне аптычных ізамераў рознае: бялкі, сінтэзаваныя з прававярчальных кіслот (прыродныя бялкі — левавярчальныя) не засвойваюцца арганізмам; левы нікацін больш ядавіты, чым правы. У біял. працэсах існуе феномен перавагі левай формы аптычнай ізамерыі, які ўплывае на ўяўленні аб шляхах зараджэння і эвалюцыі жыцця на Зямлі.

т. 1, с. 437

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРУСНІ́ЦЫ

(Rhodococcum vitis-idaea),

від кветкавых раслін сям. верасовых. Пашыраны ў халодных і ўмераных зонах Паўн. паўшар’я. На Беларусі трапляюцца часта ў лясах, хмызняках, на высечках, мохавых балотах.

Шматгадовазялёная кусцікавая расліна выш. 10—25 см з доўгім паўзучым карэнішчам, прамастойным ці ўзыходным галінастым сцяблом. Мае эндатрофную мікарызу. Лісце дробнае, шчыльнае, скурыстае, бліскучае, суцэльнае і суцэльнакрайняе, эліпсоіднае. Кветкі званочкавыя, бледна-ружовыя, са слабым пахам, сабраныя ў густыя кароткія паніклыя гронкі на канцах леташніх парасткаў. Плады — шарападобныя ярка-чырвоныя або бела-ружовыя ягады, ядомыя, з прыемным кісла-салодкім смакам (ураджайнасць 150—200 кг/га). Каштоўная харч., кармавая (для звяроў і птушак), дубільная, меданосная, дэкар. і лек. (мачагонны, антысептычны, вяжучы, проціцынготны сродак) расліна, мае бялкі, вугляводы, арган. к-ты (бензойная, яблычная, лімонная, воцатная, мурашыная, шчаўевая і інш.), цукры (цукроза, фруктоза, глюкоза), пекціны, мінер. і дубільныя рэчывы, гліказіды арбуцын, вакцынін, вітаміны С, B9, РР, карацін, катэхіны, фітанцыды, антацыяны і інш. З лек. мэтай ужываюць лісце і спелыя ягады. Ягады спажываюць свежыя і мочаныя, выкарыстоўваюць у кандытарскай прам-сці, для квашання капусты, як гарнір да мясных страў, з іх гатуюць варэнне, джэм, павідла, марынады, кісель, сок, сіроп, морс, бруснічную ваду, пасцілу, начынку для цукерак і пірагоў. Лісце выкарыстоўваюць як сурагат чаю.

т. 3, с. 270

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАБАЛІ́ЗМ

(ад грэч. anabolē уздым),

асіміляцыя, сукупнасць хім. працэсаў у жывым арганізме, якія забяспечваюць біял. сінтэз патрэбных для жыцця складаных рэчываў (бялкоў, поліцукрыдаў, тлушчаў, нуклеінавых кіслот і інш.) з больш простых. Накіраваны на ўтварэнне і абнаўленне структурных частак клетак і тканак. Непарыўна звязаны з катабалізмам (процілеглы працэс) і ўтварае з ім хім. аснову прамежкавага абмену рэчываў і абмену энергіі (забяспечвае яе назапашванне) у арганізме. Аўтатрофныя арганізмы (зялёныя расліны і некаторыя грыбы) здольныя ажыццяўляць першасны сінтэз арган. злучэнняў з CO2 з выкарыстаннем вонкавых крыніц энергіі (сонечнага святла, акіслення неарган. рэчываў), гетэратрофныя — толькі за кошт энергіі, якая вызваляецца ў працэсах катабалізму. Колькасць зыходных кампанентаў для біясінтэзу абмежаваная (глюкоза, рыбоза, амінакіслоты, піравінаградная кіслата, гліцэрына, ацэтылкаэнзім анабалізму і інш.). Як правіла, анабалізм забяспечваецца спецыфічным наборам ферментаў і ўключае шэраг аднаўленчых этапаў. У працэсе анабалізму кожная клетка сінтэзуе характэрныя для яе бялкі, вугляводы, тлушчы і інш. злучэнні (напр., мышачныя клеткі сінтэзуюць уласны глікаген і не скарыстоўваюць глікаген печані). У высокаарганізаваных арганізмаў у рэгуляцыі анабалізму на ўзроўні клетачнага абмену рэчываў акрамя ферментаў удзельнічаюць гармоны і інш. біял. актыўныя рэчывы, нерв. сістэма (гл. Нейрагумаральная рэгуляцыя). Многія прыродныя і сінтэтычныя рэчывы (анаболікі) здольныя павышаць узровень анабалізму, іх выкарыстоўваюць для штучнага нарошчвання мышачнай масы цела ў спорце (праблема допінг-кантролю), таксама як лек. сродкі ў тэрапіі хвароб абмену рэчываў.

т. 1, с. 331

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРО́ЛІЗНАЯ ПРАМЫСЛО́ВАСЦЬ,

адна з галін мікрабіялагічнай прамысловасці. Спецыялізуецца на перапрацоўцы нехарчовых раслінных матэрыялаў метадам гідролізу для атрымання этылавага спірту, кармавых дражджэй, глюкозы і ксіліту, фурфуролу, арган. кіслот, лігніну і інш. прадуктаў. Сыравінай служаць адходы лясной, дрэваапр. і цэлюлозна-папяровай прам-сці, перапрацоўкі с.-г. сыравіны (салома, сланечнікавае шалупінне, кукурузныя храпкі, сцёблы бавоўніку, мелес з цукр. буракоў і інш.). Пры гідролізе раслінных тканак вугляводы пераходзяць у раствор (пад уздзеяннем вады і цяпла ў прысутнасці каталізатараў), а лігнін застаецца. У гэтым працэсе нерастваральныя поліцукрыды ператвараюцца ў растваральныя монацукрыды (гексозы і пентозы), якія хім. і біяхім. шляхам перапрацоўваюцца ў крышт. манозы (глюкозы, ксілозы), этылавы спірт, гліцэрын, ксіліт, сарбіт і інш., у альдэгіды і іх вытворныя (фурфурол, фуран і інш.), арган. кіслоты (воцатную, лімонную, яблычную і інш.), бялкова-вітамінныя дрожджы і антыбіётыкі. З 1 т сухой сыравіны ў залежнасці ад тэхналогіі можна атрымаць да 150 кг фурфуролу, або 140 кг першасных спіртоў, або 300 кг крышт. глюкозы, або 250 кг кармавых дражджэй і каля 300 кг гідролізнага лігніну.

Гідролізная прамысловасць развіваецца з пач. 20 ст. У б. СССР з 1935 наладжана вытв-сць этылавага спірту, з 1940-х г. — кармавых дражджэй і фурфуролу. На Беларусі гідролізную прадукцыю вырабляюць з 1936 на Бабруйскім гідролізным заводзе, з 1963 на Рэчыцкім доследна-прамысловым гідролізным заводзе, шматлікіх спіртавых і крухмальных з-дах. Выпускаецца тэхн. рэктыфікаваны этылавы спірт і этылавы спірт-сырэц, кармавыя дрожджы, фурфурол, вуглякіслы газ. У 1994 выраблена (разам з прадпрыемствамі мікрабіял. прам-сці) 49 тыс. т таварнай прадукцыі кармавых дражджэй (найб. у 1990 — 508 тыс. т). Значную гідролізную прамысловасць, якая спецыялізуецца пераважна на вытв-сці фурфуролу і этылавага спірту, маюць ЗША (найб. вытворца фурфуролу), Францыя, Італія, Японія, Фінляндыя; развітая вытв-сць этылавага спірту, кармавых дражджэй і фурфуролу ў Расіі, Германіі і інш. краінах. Гідролізная прамысловасць — перспектыўная галіна біятэхналогіі, здольная вырашаць праблемы, звязаныя з вытв-сцю харч. прадуктаў, лекавых прэпаратаў, энергет. паліва і сыравіны для хім. і біяхім. Вытв-сці.

Т.П.Цэдрык.

т. 5, с. 240

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯАРГАНІ́ЧНАЯ ХІ́МІЯ,

галіна арганічнай хіміі, якая вывучае сувязь паміж будовай арган. рэчываў і іх біял. функцыямі. Выкарыстоўвае пераважна метады арган. і фіз. хіміі, таксама фізікі і матэматыкі. У біяарганічнай хіміі даследуюцца біяпалімеры (бялкі, тлушчы, вугляводы, ферменты, нуклеінавыя кіслоты і інш.), нізкамалекулярныя біярэгулятары (вітаміны, гармоны, прастагландзіны, антыбіётыкі, ферамоны і інш.); сінт. біялагічна актыўныя злучэнні, у т. л. лекі, пестыцыды, гербіцыды і інш. Спалучае аналіз хім. структуры, прасторавай будовы арган. злучэння з яго сінтэзам, мадыфікацыяй і вывучэннем хім. дзеяння ў сувязі з біял. функцыямі.

Склалася на мяжы біяхіміі і арган. хіміі, з’явілася лагічным працягам хіміі прыродных злучэнняў. Найб. значныя этапы станаўлення біяарганічнай хіміі: адкрыццё α-спіральнай структуры бялкоў (Л.Полінг), вызначэнне хім. будовы нуклеатыдаў (А.Тод), амінакіслотнай паслядоўнасці інсуліну (Ф.Сенгер), працы па канфармацыйным аналізе біялагічна актыўных злучэнняў (Д.Бартан, У.Прэлаг), поўны хім. сінтэз рэзерпіну, хларафілу, вітаміну B12 (Р.Вудвард). У Расіі і СССР уплыў на развіццё біяарганічнай хіміі зрабілі працы А.М.Бутлерава, М.Дз.Зялінскага, А.Е.Арбузава, У.М.Радыёнава, А.М.Белазерскага, І.М.Назарава, М.А.Праабражэнскага, М.М.Шамякіна, Ю.А.Аўчыннікава і інш. У 1960—70-я г. пачалі выкарыстоўваць у сінтэзе ферменты, напр., для камбінаванага хіміка-энзіматычнага сінтэзу гена (Г.Карана). Энзімалагічныя метады сінтэзу далі магчымасць выбіральна ператвараць прыродныя злучэнні і атрымліваць новыя біялагічна актыўныя пептыды, алігацукрыды, нуклеатыды і нуклеінавыя кіслоты. У 1970—80-я г. інтэнсіўна развіваюцца сінтэз алігануклеатыдаў і генаў, мембраналогія, аналіз структуры складаных бялкоў, сярод якіх трансаміназа, β-галактазідаза, ДНК-залежная РНК-полімераза, γ-глабуліны, інтэрфероны і мембранныя бялкі (адэназінтрыфасфатаза, бактэрыярадапсін, цытахромы P-450); даследуюцца будова і механізм дзеяння нейрапептыдаў — рэгулятараў вышэйшай нерв. дзейнасці. Біяарганічная хімія звязана з практычнай медыцынай і сельскай гаспадаркай (стварэнне імунахім. сродкаў мікрааналізу біялагічна актыўных рэчываў, сінтэз антыбіётыкаў, гармонаў, вітамінаў, стымулятараў росту раслін і рэгулятараў паводзін жывёл і насякомых), біятэхналогіяй, хім. і мікрабіял. прам-сцю. Спалучэнне метадаў біяарганічнай хіміі і геннай інжынерыі дало магчымасць атрымаць інсулін чалавека, інтэрферон, гармон росту чалавека і інш. біялагічна актыўныя злучэнні бялкова-пептыднай прыроды.

На Беларусі развіццё біяарганічнай хіміі пачалося пасля ўтварэння ў 1974 Ін-та біяарган. хіміі АН на чале з А.А.Ахрэмам. Вывучаюцца і даследуюцца: структуры і функцыі бялкоў, ферментаў, нуклеінавых кіслот і нізкамалекулярных біярэгулятараў (стэроідных гармонаў, прастагландзінаў), тонкі арган. сінтэз пестыцыдаў, лек. прэпаратаў і іншых фізіялагічна актыўных біяхім. злучэнняў. Даследаваны: біяхім. ўласцівасці стэроідаў і прастагландзінаў (Ахрэм, Ф.А.Лахвіч, У.А.Хрыпач), стэроідных і бялковых гармонаў (А.А.Стральчонак), нуклеатыдаў і нуклеазідаў (І.А.Міхайлопула), механізмы дзеяння акісляльна-аднаўляльных ферментных сістэм і іх мадэлявання (Дз.І.Мяцеліца, С.А.Усанаў), структура і арганізацыя мембранна-звязаных ферментаў (В.Л.Чашчын), таксама сінтэз новых лек. прэпаратаў на аснове гетэрацыклічных злучэнняў (Л.І.Ухава) і інш.

Літ.:

Овчинников Ю.А. Биоорганическая химия М., 1987;

Дюга Г., Пенни К. Биоорганическая химия: Хим. подходы к механизму действия ферментов: Пер. с англ. М., 1983;

Бендер М., Бергерон Р., Комияма М. Биоорганическая химия ферментативного катализа: Пер. с англ. М., 1987.

Дз.І.Мяцеліца.

т. 3, с. 165

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АБМЕ́Н РЭ́ЧЫВАЎ, метабалізм,

сукупнасць хім. ператварэнняў рэчываў у жывых арганізмах, якія забяспечваюць іх развіццё, жыццядзейнасць, самаўзнаўленне, сувязь з навакольным асяроддзем і адаптацыю да змен у ім. Аснову абмену рэчываў складаюць непарыўна звязаныя і ўзаемаабумоўленыя працэсы анабалізму, катабалізму і абмену энергіі. У сукупнасці яны забяспечваюць структурную і функцыян. цэласнасць арганізмаў, ляжаць у аснове іх гамеастазу. У планетарным маштабе абмен рэчываў складае важную частку кругавароту рэчываў у прыродзе. Для кожнага віду жывых арганізмаў характэрны свой, генетычна замацаваны ўзровень абмену рэчываў, які залежыць ад іх спадчынных уласцівасцяў, месца ў эвалюцыйным радзе, узросту, полу, умоў існавання і інш. фактараў (напр., абмен рэчываў ніжэйшы ў раслін і халаднакроўных жывёл, вышэйшы ў цеплакроўных, слабы ў час спячкі, анабіёзу, высокі ў перыяд размнажэння і г.д.). Пры вял. і разнастайным асартыменце арган. рэчываў, якія ўцягваюцца ў абмен, агульная яго схема ў розных арганізмаў падобная, вызначаецца ўпарадкаванасцю і падабенствам паслядоўнасці біяхім. ператварэнняў, што адбываюцца пры абавязковым удзеле ферментаў. Дзякуючы абмену рэчываў з пажыўных рэчываў утвараюцца характэрныя для дадзенага арганізма злучэнні, якія выкарыстоўваюцца як буд. ці энергет. матэрыял, пастаянна і няспынна абнаўляюцца органы і тканкі без прынцыповай змены іх хім. саставу. Асн. тыпы злучэнняў, якія ўдзельнічаюць у абмене рэчываў у арганізме, — бялкі, тлушчы, вугляводы, мінеральныя рэчывы. Іх навук. даследаванне вылучаецца ў самаст. раздзелы біяхіміі.

Ператварэнні рэчываў ад моманту іх паступлення ў арганізм да ўтварэння канчатковых прадуктаў распаду складаюць сутнасць т.зв. прамежкавага абмену рэчываў. Асн. яго этапы: ператраўленне і ўсмоктванне пажыўных рэчываў у страўнікава-кішачным тракце; дастаўка атрыманых рэчываў да розных органаў і тканак; іх перабудова, раскладанне і выкарыстанне для біясінтэзу спецыфічных рэчываў, клетак і тканак; раскладанне такіх рэчываў з утварэннем прамежкавых злучэнняў і канчатковых прадуктаў абмену; выдаленне апошніх з арганізма. Цэнтр. месца ў абмене рэчываў належыць цыклу трыкарбонавых кіслот, у якім перакрыжоўваюцца шляхі бялковага, вугляводнага, тлушчавага абмену (гл. схему). Найважн. прамежкавы прадукт абмену рэчываў — ацэтылкаэнзім A, які ўдзельнічае ва ўсіх працэсах анабалізму і катабалізму і аб’ядноўвае іх; асн. канчатковыя прадукты — H2O, CO3, NH3, мачавіна і інш. У рэгуляванні працэсаў абмену рэчываў гал. месца займаюць змены актыўнасці і інтэнсіўнасці сінтэзу клетак, абмен можа самарэгулявацца па прынцыпе адваротнай сувязі. Вял. значэнне ў рэгуляванні абмену рэчываў маюць біял. мембраны. У высокаарганізаваных жывёл рэгулюецца і каардынуецца нейрагумаральнай сістэмай пры ўдзеле біял. актыўных рэчываў (вітаміны, гармоны, медыятары і інш.). Разбалансаванне абмену рэчываў з’яўляецца прычынай або вынікам узнікнення разнастайных хвароб, фіксацыя змен у ім — важны дыягнастычны сродак. Гл. таксама Бялковы абмен, Вугляводны абмен, Тлушчавы абмен, Мінеральны абмен.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Страйер Л. Биохимия: Пер. с англ. Т. 1—3. М., 1984—85.

Я.В.Малашэвіч.

Схема абмену рэчываў.

т. 1, с. 28

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БРАДЖЭ́ННЕ,

анаэробны ферментатыўны акісляльна-аднаўляльны працэс расшчаплення (катабалізму) арган. рэчываў, што адбываецца ў жывых арганізмах і эксперым. умовах пераважна пад уздзеяннем мікраарганізмаў або вылучаных з іх ферментаў. Зыходным субстратам для браджэння з’яўляюцца гал. ч. вугляводы, арган. к-ты, пурыны і пірымідзіны. Пры браджэнні ў выніку шэрагу спалучаных акісляльна-аднаўляльных рэакцый вызваляецца энергія, неабходная для жыццядзейнасці арганізмаў, і ўтвараюцца хім. злучэнні, што выкарыстоўваюцца імі для біясінтэзу амінакіслот, бялкоў, тлушчаў і інш. «будаўнічых» кампанентаў цела (некаторыя бактэрыі, мікраскапічныя грыбы і прасцейшыя жывуць толькі за кошт энергіі браджэння). Адначасова назапашваюцца канчатковыя прадукты браджэння: у залежнасці ад віду зброджвальнага субстрату і шляхоў яго метабалізму ўтвараюцца спірты (этанол і інш.), карбонавыя к-ты (малочная, алейная і інш.), ацэтон і інш. арган. злучэнні, вуглякіслы газ, у шэрагу выпадкаў — вадарод. Паводле ўтварэння асн. прадуктаў адрозніваюць браджэнне спіртавое, малочнакіслае, масленакіслае, прапіёнавакіслае, ацэтона-бутылавае, ацэтона-этылавае і інш. Характар і інтэнсіўнасць браджэння, колькасныя суадносіны канчатковых прадуктаў, а таксама кірунак залежаць ад асаблівасцяў яго ўзбуджальніка і ўмоў, пры якіх яно адбываецца (pH, ступень аэрацыі, від субстрату і інш.). Найб. вывучана спіртавое браджэнне.

Спіртавое браджэнне адкрыў франц. вучоны Каньяр дэ ла Тур (1836), які вызначыў, што яно звязана з ростам і размнажэннем дражджэй. Хім. ўраўненне спіртавога браджэння — C6H12O6·2C2H5OH + 2CO2 выведзена франц. хімікамі А.Лавуазье (1789) і Ж.Гей-Люсакам (1815). Л.Пастэр (1857) вызначыў, што спіртавое браджэнне выклікаюць толькі жывыя дрожджы ў анаэробных умовах. Ням. хімік Э.Бухнер (1897) высветліў, што яго могуць ажыццяўляць таксама выцяжкі з дражджэй. Пры т-ры, роўнай або большай за 50 °C, працэс браджэння спыняецца. Вылучаны і ідэнтыфікаваны 11 метабалітаў гэтага працэсу — прамежкавых прадуктаў спіртавога браджэння глюкозы і 11 ферментаў, што паслядоўна каталізуюць усе рэакцыі і спіртавога браджэння (сумарнае ўраўненне якога C6H12O6 + 2H3PO4 + 2АДФ → 2CH3CH2OH + 2CO2 + 2АТФ). Існуе цесная сувязь паміж браджэннем і дыханнем мікраарганізмаў, раслін і жывёл. У прысутнасці кіслароду спіртавое браджэнне прыгнечваецца ці зусім спыняецца. Працэс ператварэння глюкозы ў жывых арганізмах (гліколіз) падобны да спіртавога браджэння і ідзе з удзелам тых жа ферментаў (адметныя рысы ён набывае на апошніх этапах). Зброджванне вугляводаў (глюкозы, ферментатыўных гідралізатаў крухмалу, кіслотных гідралізатаў драўніны) шырока выкарыстоўваецца ў многіх галінах прам-сці з мэтай атрымання этылавага спірту, гліцэрыну і інш. тэхн. і харч. прадуктаў. На спіртавым браджэнні заснаваны прыгатаванне цеста ў хлеба-пякарнай прам-сці, малочнакіслых прадуктаў, вінаробства і піваварэнне. Малочнакіслае браджэнне бывае гомаферментатыўнае (яго асн. прадукт — малочная к-та; выклікаецца бактэрыямі Streptococcus lactis, S. diacetilactis, Lactobacillus delbrückii) і гетэраферментатыўнае (акрамя малочнай утвараюцца бурштынавая і воцатная к-ты, этанол і інш.; выклікаецца бактэрыяй Escherichia coli — кішачнай палачкай). Малочнакіслае браджэнне выкарыстоўваюць пры вырабе кісламалочных прадуктаў, малочнай к-ты, у хлебапячэнні, квашанні агародніны, сіласаванні кармоў і інш. Масленакіслае браджэнне вугляводаў з утварэннем масленай к-ты ажыццяўляюць многія анаэробныя бактэрыі з роду Clostrobium; выкарыстоўваецца для атрымання масленай к-ты, пры вымочванні валакністых раслін (лёну, канапель, джуту і інш.). Ацэтона-бутылавае браджэнне вугляродаў з утварэннем бутылавага спірту і ацэтону (таксама невял. колькасці вадароду, вуглякіслага газу, воцатнай і масленай к-т і этылавага спірту) выклікае бактэрыя Clostridium acetobutilicum; выкарыстоўваюцца для прамысл. атрымання бутылавага спірту і ацэтону, неабходных для хім. і лакафарбавай прам-сці. Некаторыя бактэрыі з роду Clostridium (гніласныя анаэробы) здольныя зброджваць таксама амінакіслоты бялкоў. Гэты працэс мае вял. значэнне ў кругавароце рэчываў у прыродзе. Прапіёнавакіслае браджэнне вугляводаў з утварэннем вуглякіслага газу, прапіёнавай і воцатнай к-т выклікаюць некалькі відаў бактэрый з роду Propionibacterium. На гэтым працэсе заснавана сыраробства. Ёсць віды браджэння, якія суправаджаюцца і аднаўленчымі працэсамі, напр. зброджванне цукру плесневым грыбам Aspergillus niger, які да 90% засвоенага ім цукру ператварае ў лімонную к-ту, што выкарыстоўваецца ў харч. прам-сці для мікрабіял. сінтэзу лімоннай к-ты. Традыцыйна браджэнне называюць таксама кіслародныя акісляльныя працэсы, напр. воцатнакіслае і глюконавакіслае браджэнне, што ажыццяўляюць аэробныя бактэрыі з роду Acetobacter і некаторыя плесневыя грыбы, якія акісляюць этылавы спірт з утварэннем воцатнай, а глюкозу — глюконавай к-т.

Літ.:

Ленинджер А. Основы биохимии: Пер. с англ. Т. 2. М., 1985;

Кретович В.Л. Биохимия растений. 2 изд. М., 1986.

А.М.Ведзянееў.

т. 3, с. 228

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)