ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,

раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.

Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума a + b вектараў a і b — вектар, праведзены з пачатку a да канца b, калі канец a і пачатак b супадаюць. Складанне вектараў мае ўласцівасці: a + b = b + a ; ( a + b ) + c = a + ( b + c ) ; a + 0 = a ; a + (−a) = 0 ; дзе 0 — нулявы вектар, a — вектар, процілеглы вектару a (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць ab вектараў a і b — вектар x такі, што x + b = a ; рознасць ab ёсць вектар, які злучае канец вектара b з канцом вектара a, калі яны адкладзены з аднаго пункта. Здабыткам вектара a на лік α наз. вектар α a, модуль якога роўны | α a | і які накіраваны аднолькава з вектарам a, калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці a=0, то α a = 0. Уласцівасці множання вектара на лік: α ( a + b )) = αa + αb ; ( a + b )) α = a α + b α ; α ( β a ) = ( α β ) a ; 1 a = a . Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).

А.А.Гусак.

т. 4, с. 63

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРААЭРАМЕХА́НІКА (ад гідра... + аэрамеханіка),

раздзел механікі, які вывучае законы руху і раўнавагі вадкасцей і газаў, а таксама іх узаемадзеянне паміж сабой і з межавымі паверхнямі цвёрдых цел. Вадкасці і газы разглядаюцца як суцэльнае асяроддзе (без уліку малекулярнай будовы). Падзяляецца на тэарэт. і эксперыментальную; уключае гідрамеханіку, аэрамеханіку, газавую дынаміку, пытанні абгрунтавання эксперыментаў і выкарыстання іх вынікаў разглядаюцца ў падобнасці тэорыі і ў мадэліраванні. Вынікі даследаванняў па гідрааэрамеханіцы выкарыстоўваюцца ў ракетна-касм., авіяц. і інш. тэхніцы, пры буд-ве суднаў, турбін, гідратэхн. збудаванняў і інш.

Станаўленне гідрааэрамеханікі як навукі звязана з працамі Л.Эйлера (атрымаў ураўненні руху ідэальнай вадкасці і неразрыўнасці ўраўненне) і Д.Бернулі (устанавіў суадносіны паміж ціскам вадкасці і яе кінетычнай энергіяй; гл. Бернулі ўраўненне). У работах Ж.Лагранжа, А.Кашы, Т.Кірхгофа, Т.Гельмгольца, Дж.Стокса, М.Я.Жукоўскага, С.А.Чаплыгіна і інш. распрацаваны аналітычныя метады даследаванняў безвіхравых і віхравых цячэнняў ідэальнай вадкасці, руху цел у вадкасцях і газах і інш. Асн. дасягненне гідрааэрамеханікі 19 ст. — пераход да даследаванняў руху рэальнай (вязкай) вадкасці, які падпарадкоўваецца ўраўненням Наўе—Стокса; ням. вучоны Л.Прандтль распрацаваў тэорыю пагранічнага слоя (1904). Тэарэт. метады гідрааэрамеханікі грунтуюцца на дакладных (ці набліжаных) ураўненнях, што апісваюць цячэнне вадкасці (газу); выкарыстанне ЭВМ дазваляе рашаць складаныя сістэмы ўраўненняў з улікам многіх фактараў.

На Беларусі праблемы гідрааэрамеханікі распрацоўваюць у Ін-це цепла- і масаабмену, Ін-це фізікі АН Беларусі, БДУ, Бел. політэхн. акадэміі.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. 4 изд. М., 1988;

Прандтль Л. Гидроаэромеханика: Пер. с нем. М., 1949;

Седов Л.И. Механика сплошной среды. Т. 1—2. 4 изд. М., 1983—84.

Б.А.Калавандзін, В.А.Сасіновіч.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

МЕТАЛАЗНА́ЎСТВА,

навука пра састаў, будову і ўласцівасці металаў і сплаваў, пра іх залежнасць (заканамернасці змен) ад вонкавых уздзеянняў (цеплавых, мех., хім. і інш.). Асн. практычная задача М. — пошук аптымальных саставаў і метадаў апрацоўкі сплаваў для атрымання патрэбных (зададзеных) уласцівасцей. М. ўмоўна падзяляюць на тэарэтычнае, якое разглядае агульныя заканамернасці будовы і працэсаў, што адбываюцца ў металах і сплавах пры розных уздзеяннях, і прыкладное, якое вывучае тэхнал. працэсы апрацоўкі (тэрмічная апрацоўка, ліццё, апрацоўка металаў ціскам), а таксама канкрэтныя класы метал. матэрыялаў. Састаўной ч. М. з’яўляецца металаграфія.

М. развіваецца з 2-й пал. 19 ст. Яго заснавальнікамі лічацца Дз.К.Чарноў і П.П.Аносаў. Развіццю М. спрыяла адкрыццё ў 1869 перыядычнага закону Дз.І.Мендзялеева, што дазваляе прадбачыць уласцівасці як чыстых металаў, так і сплаваў. Станаўленню М. спрыялі працы Ф.Асмонда і А.Партэвена (Францыя), Г.Тамана (Германія), У.Робертс-Аўстэна (Вялікабрытанія) Г.Хоу (ЗША) і інш. Значны ўклад у развіццё М. зрабілі рас. вучоныя Г.В.Курдзюмаў, А.А.Бочвар, А.А.Байкоў і інш.

На Беларусі работы ў галіне М. вядуцца ў Ін-це фізікі цвёрдага цела і паўправаднікоў, Фізіка-тэхнал. ін-це Нац. АН, БПА, інш. ВНУ і галіновых НДІ. Распрацоўваюцца пытанні павышэння якасці металапрадукцыі, удасканалення тэхналогіі яе апрацоўкі, укаранення новых спосабаў уздзеяння на структуру і ўласцівасці металаў і сплаваў, стварэння новых матэрыялаў і інш. Важкі ўклад у развіццё М. зрабілі працы бел. вучоных Г.А.Анісовіча, С.А.Астапчыка, С.І.Губкіна, К.В.Горава, Я.Р.Канавалава, В.П.Севярдэнкі, А.В.Сцепаненкі, В.М.Чачына і інш.

Літ.:

Бочвар А.А. Металловедение. 5 изд. М., 1956;

Болховитинов Н.Ф. Металловедение и термическая обработка. 6 изд. М., 1965;

Структура и свойства металлов и сплавов. Мн., 1974.

А.П.Ласкаўнёў.

т. 10, с. 304

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ДАПАЎНЯ́ЛЬНАСЦІ ПРЫ́НЦЫП,

метадалагічны прынцып, прапанаваны Н.Борам (1927) у сувязі з неабходнасцю стварэння лагічна несупярэчлівай фіз. інтэрпрэтацыі квантавай механікі; метадалагічнае абагульненне неазначальнасцей суадносін.

Мікраскапічныя аб’екты (электроны, фатоны і інш.) у розных эксперым. умовах могуць паводзіць сябе як строга лакалізаваныя часціцы ці як хвалі. Аднак уяўленне пра суіснаваине карпускулярных і хвалевых уласцівасцей у адным і тым жа аб’екце звязана з неабходнасцю аб’яднання несумяшчальных паняццяў (напр., паняцце даўжыні хвалі ў пэўным пункце прасторы не мае сэнсу). У адпаведнасці з Д.п. пры тэарэт. апісанні мікраскапічных з’яў неабходна ўжываць 2 сістэмы макраскапічных паняццяў, бо выкарыстанне адной з іх выключае магчымасць адначасовага выкарыстання другой; абедзве ж яны аднолькава неабходныя для поўнага апісання квантава-мех. сістэм і з’яўляюцца нібыта ўзаемна дапаўняльнымі бакамі такога апісання. Бор прадэманстраваў таксама справядлівасць Д.п. ў дачыненні да апісання біял., псіхал. і сац. з’яў. З дапамогай Д.п. ўстанаўліваецца эквівалентнасць (раўназначнасць) паміж двума класамі паняццяў, што апісваюць супярэчлівыя сітуацыі ў розных сферах пазнання. У вузкім сэнсе Д.п. супадае з прынцыпам ням. фізіка В.Гайзенберга, які адзначаў, што пры пэўнасці каардынаты мікрачасціцы мае месца нявызначанасць імпульсу і наадварот. Часам Д.п. ацэньваецца як метадалогія, толькі знешне падобная на дыялектычную, або наогул як метафізічны падыход (мех. злучэнне процілегласцей). Фізікі капенгагенскай школы (П.Іордан, Дж.Франк) лічылі Д.п. чыста суб’ектыўным, цалкам абумоўленым слабасцямі пазнання, звязанымі з адсутнасцю спец. сродкаў адлюстравання цэласнасцей, вымушанасцю пазнання па частках.

Літ.:

Крымский С.Б., Кузнецов В.И. Мировоззренческие категории в современном естествознании. Киев, 1983;

Дополнительность и методология научного познания // Нильс Бор и наука XX в.: Сб. науч. тр. Киев, 1988;

Мировоззренческие структуры в научном познании. Мн., 1993.

Л.М.Тамільчык, А.В.Ягораў.

т. 6, с. 50

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯФІ́ЗІКА (ад бія... + фізіка),

біялагічная фізіка, навука пра фіз.-хім. асновы і заканамернасці жыццядзейнасці, а таксама ультраструктуры біял. сістэм на ўсіх узроўнях арганізацыі ад субмалекулярнага да клеткі і цэлага арганізма. Падзяляецца на квантавую, малекулярную, мембранную, клетачную, біяфізіку кіравання і рэгуляцыі, біяфізіку складаных сістэм. Вылучаюць таксама біяфізіку рухомасці, узбуджальнасці, рэцэпцыі, біяэнергет., трансп. працэсаў і інш.

Біяфізіка як навука сфарміравалася ў сярэдзіне 20 ст. Першыя даследаванні біяфіз. характару вядомы з 17 ст. (працы франц. вучонага Дэкарта па вывучэнні органаў пачуццяў). У 1791 адкрыта жывёльная электрычнасць (італьян. вучоны Л.Гальвані). У 2-й пал. 19 ст. ням. вучоныя Г.Гельмгольц і В.Вунт паклалі пачатак фізіял. акустыцы і оптыцы. У Расіі развіццю біяфіз. даследаванняў спрыялі працы І.М.Сечанава (біямеханіка рухаў, канец 19 ст.), П.П.Лазарава (іонная тэорыя ўзбуджэння, 1916), Г.М.Франка і С.Ф.Радыёнава (фіз. метад выяўлення звышслабага свячэння біяаб’екта, 1950-я г.). У 1953 англ. Вучоныя Дж.Кендру і М.Перуц адкрылі структуру міяглабіну і гемаглабіну.

Станаўленне біяфізікі на Беларусі пачалося з даследаванняў М.М.Гайдукова і Ц.М.Годнева па фотасінтэзе (1924—27). Навукова-даследчыя работы па малекулярнай і мембраннай біяфізіцы вядуцца ў ін-тах АН Беларусі (фотабіялогіі, біяарган. хіміі, біяхіміі, фізікі), БДУ, Гродзенскім і Віцебскім мед. ін-тах. Высветлены прырода і інфарм. магчымасць УФ-флюарэсцэнцыі бялкоў (С.В.Конеў, Я.А.Чарніцкі), рэгуляцыя фотасінтэзу пры адаптацыі праз змяненне структурна-функцыян. стану хларапластаў (В.М.Іванчанка), раскрыты асаблівасці фатонікі малекулы хларафілу (Г.П.Гурыновіч, К.М.Салаўёў), залежнасці радыеадчувальнасці дэзоксірыбануклеапратэідаў ад колькасці міжмалекулярных кантактаў (А.М.Пісарэўскі, В.Т.Андрыянаў, С.М.Чаранкевіч), адкрыты новыя рэгулятарныя механізмы ў палачцы сятчаткі вока (І.Дз.Валатоўскі). Праведзены даследаванні па матэм. разліку канфармацыі поліпептыдаў і бялкоў (С.Г.Галакціёнаў), мембранна-структурным кантролі праліферацыі мікробных клетак (У.М.Мажуль), кааператыўных эфектах у пратэаліпасомах (П.А.Кісялёў), электрафізіялогіі расліннай клеткі (У.М.Юрын), структурнай і рэцэпторнай рэарганізацыі мембранаў мозга пры старэнні (С.Л.Аксёнцаў і А.А.Мілюцін).

Літ.:

Конев С.В., Волотовский И.Д. Фотобиология. 2 изд. Мн., 1979;

Биофизика. М., 1983;

Рубин А.Б. Биофизика. Кн. 1—2. М., 1987;

Волькенштейн М.В. Общая биофизика. М., 1978.

С.В.Конеў.

т. 3, с. 180

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЬЮ́ТАН ((Newton) Ісаак) (4.1.1643, Вулстарп, каля г. Грантэм, Вялікабрытанія — 31.3.1727),

англійскі фізік, матэматык і астраном, стваральнік класічнай механікі і асноў сучаснага прыродазнаўства. Чл. Лонданскага каралеўскага т-ва (1672, з 1703 яго прэзідэнт). Замежны чл. Парыжскай АН (1699). Скончыў Трыніты-каледж Кембрыджскага ун-та (1665). У 1669—1701 заг. кафедры матэматыкі гэтага ун-та. З 1696 даглядчык, з 1699 дырэктар Манетнага двара ў Лондане. Навук. працы па механіцы, оптыцы, астраноміі, матэматыцы. Даў азначэнні зыходных паняццяў і сфармуляваў асн. законы класічнай механікі (гл. Ньютана законы механікі). Адкрыў сусветнага прыцягнення закон. Увёў тэрмін «гравітацыя» і стварыў класічную тэорыю гравітацыі. На яе аснове растлумачыў Кеплера законы, асаблівасці руху Месяца, прэцэсію Юпітэра, прапанаваў тэорыю фігуры Зямлі, тэорыю прыліваў і адліваў. У галіне оптыкі адкрыў дысперсію святла (1666), храматычную аберацыю, інтэрферэнцыю святла ў тонкіх слаях паветра (гл. Ньютана кольцы). Сканструяваў люстэркавы тэлескоп-рэфлектар (1668), вынайшаў рэфлектарны мікраскоп (1672) і секстант. Развіў карпускулярную тэорыю святла. Распрацаваў дыферэнцыяльнае і інтэгральнае злічэнні (1665—66; гл. Ньютана—Лейбніца формула), пашырыў бінаміяльную формулу на выпадак адвольных рэчаісных паказчыкаў (гл. Ньютана біном). Гал. праца Н. — «Матэматычныя асновы натуральнай філасофіі» (1687), якая стала фундаментам класічнай фізікі і вызначыла развіццё прыродазнаўства ў наступныя 2 стагоддзі. У аснову ньютанаўскай карціны свету пакладзены паняцці абс. прасторы і часу, апісанне фіз. ўзаемадзеяння праз паняцце сілы, тэорыя далёкадзеяння, а таксама філас.-тэалагічныя погляды Н. Яго імем названа адзінка сілы ў СІньютан.

Тв.:

Рус. пер. — Всеобщая арифметика или книга об арифметических синтезе и анализе. М., 1948;

Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. 2 изд. М., 1954;

Математические начала натуральной философии. М., 1989.

Літ.:

Исаак Ньютон, 1643—1727: Сб. статей к трехсотлетию со дня рождения. М.; Л., 1943;

Карцев В.П. Ньютон. М., 1987;

Вавилов С.И. Исаак Ньютон, 1643—1727. 4 изд. М., 1989.

М.М.Касцюковіч.

І.Ньютан.

т. 11, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДНО́СНАСЦІ ТЭО́РЫЯ,

фізічная тэорыя прасторы і часу ў іх сувязі з матэрыяй і законамі яе руху. Падзяляецца на спецыяльную (СТА) і агульную (АТА). СТА створана ў 1904—08 у выніку пераадольвання цяжкасцяў, якія ўзніклі ў класічнай фізіцы пры тлумачэнні аптычных (электрадынамічных) з’яў у рухомых асяроддзях (гл. Майкельсана дослед). Заснавальнікі СТА — Г.А.Лорэнц, А.Пуанкарэ, А.Эйнштэйн, Г.Мінкоўскі.

У працы Эйнштэйна «Да электрадынамікі рухомых цел» (1905) сфармуляваны 2 асн. пастулаты СТА; эквівалентнасць усіх інерцыйных сістэм адліку (ІСА), пры апісанні не толькі мех., а таксама аптычных, эл.-магн. і інш. працэсаў (спец. адноснасці прынцып); пастаянства скорасці святла ў вакууме ва ўсіх ІСА; незалежнасць яе ад руху крыніц і прыёмнікаў святла. Пераход ад адной ІСА да ўсякай іншай ІСА адбываецца з дапамогай Лорэнца пераўтварэнняў, якія вызначаюць характэрныя прадказанні СТА; скарачэнне падоўжных памераў цела, запавольванне часу і нелінейны закон складання скарасцей, згодна з якім у прыродзе не можа адбывацца рух (перадача сігналаў) са скорасцю, большай за скорасць святла ў вакууме. СТА — фіз. тэорыя працэсаў, для якіх уласцівы вял., блізкія да скорасці святла c у вакууме скорасці руху. У тым выпадку, калі скорасць v намнога меншая за скорасць свята (v << c), усе асн. палажэнні і формулы СТА пераходзяць у адпаведныя суадносіны класічнай механікі. Раздзелы фізікі, у якіх неабходна ўлічваць адноснасць адначасовасці (з дакладнасцю да v​2/c​2 і вышэй), наз. рэлятывісцкай фізікай. Першай створана рэлятывісцкая механіка, у якой устаноўлены залежнасці поўнай энергіі E і імпульсе p цела масы m ад скорасці руху v: E = m c2 1 v2 / c2 , p = m v 1 v2 / c2 , адкуль вынікае ўзаемасувязь энергіі спакою цела з яго масай: E0 = mc​2. На падставе аб’яднання СТА і квантавай механікі пабудаваны рэлятывісцкая квантавая механіка і рэлятывісцкая квантавая тэорыя поля, якія з’явіліся тэарэт. асновай фізікі элементарных часціц і фундаментальных узаемадзеянняў. Усе асн. палажэнні і прадказанні СТА і пабудаваных на яе аснове фіз. тэорый знайшлі пацвярджэнне ў эксперыментах, выкарыстоўваюцца пры вырашэнні практычных задач ядз. энергетыкі, праектаванні і эксплуатацыі паскаральнікаў зараджаных часціц і г.д. Агульная тэорыя адноснасці (АТА), створаная Эйнштэйнам (1915—16) як рэлятывісцкая (геаметрычная) тэорыя гравітацыйных узаемадзеянняў, вызначыла новы ўзровень навук. поглядаў на прастору і час. Яна пабудаваная на падставе СТА як рэлятывісцкае абагульненне тэорыі сусветнага прыцягнення Ньютана на моцныя гравітацыйныя палі і скорасці руху, блізкія да скорасці святла. АТА апісвае прыцягненне як уздзеянне гравітацыйнай масы рэчыва і поля згодна з эквівалентнасці прынцыпам на ўласцівасці 4-мернай прасторы-часу. Геаметрыя гэтай прасторы перастае быць эўклідавай (плоскай), а становіцца рыманавай (скрыўленай). Гэта азначае, што кожнаму пункту прасторы-часу адпавядае свая метрыка, сваё скрыўленне. Пераўтварэнні Лорэнца ў АТА таксама залежаць ад каардынат прасторы і часу, становяцца лакальнымі, таму можна гаварыць толькі аб лакальным выкананні законаў СТА у АТА. Ролю гравітацыйнага патэнцыялу адыгрывае метрычны тэнзар, які вызначаецца як рашэнне ўведзеных у АТА нелінейных ураўненняў гравітацыйнага поля (ураўненняў Гільберта—Эйнштэйна). У АТА прымаецца, што гравітацыйная маса скрыўляе трохмерную прастору і змяняе працягласць часу тым больш, чым большая гэта маса (большае прыцягненне). У АТА рух цел па інерцыі (пры адсутнасці вонкавых сіл негравітацыйнага паходжання) адбываецца не па прамых лініях з пастаяннай скорасцю, а па скрыўленых лініях з пераменнай скорасцю. Гэта значыць, што ў малой частцы прасторы-часу, дзе гравітацыйнае поле можна лічыць аднародным, створаны ім эфект эквівалентны эфекту, абумоўленаму паскораным (неінерцыяльным) рухам адпаведнай сістэмы адліку. Таму АТА, у якой паняцце ІСА па сутнасці не мае сэнсу, наз. тэорыяй неінерцыйнага руху. Асн. гравітацыйныя эфекты, прадказаныя ў АТА, пацверджаны эксперыментальна. АТА адыграла вял. ролю ў фарміраванні сучаснай касмалогіі.

На Беларусі навук. даследаванні па СТА і АТА пачаліся ў 1928—29 (Ц.Л.Бурстын, Я.П.Громер) і атрымалі інтэнсіўнае развіццё ў АН, БДУ і інш.

Літ.:

Эйнштэйн А. Сущность теории относительноси. М., 1955;

Фок В.А. Теория пространства, времени и тяготения. М., 1961;

Ландау Л.Д., Лифшиц Е.М. Теория поля. М., 1967;

Синг Дж.Л. Общая теория относительности: Пер. с англ. М., 1963;

Фёдоров Ф.И. Группа Лоренца. М., 1979;

Левашев А.Е. Движение и двойственность в релятивистской электродинамике. Мн., 1979;

Иваницкая О.С. Лоренцев базис и гравитационные эффекты в эйнштейновской теории тяготения. Мн., 1979.

А.А.Богуш.

т. 1, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

пункт, ‑а, М ‑кце, м.

1. Пэўнае месца ў прасторы або на паверхні чаго‑н.; кропка. Сымон нічога не бачыць навокал сябе, вочы яго блішчаць, пазіраюць у адзін пункт. Колас. Апошнім пунктам у Еўропе, дзе мы спыніліся, быў Капенгаген, сталіца Даніі. Новікаў. За невялічкай вёскай каля выгану быў самы высокі пункт ваколіцы. Бядуля.

2. Месца, памяшканне, прыстасаванне і прызначанае для якіх‑н. мэт. Камандны пункт. Назіральны пункт. Зборны пункт. Перасыльны пункт. Дыспетчарскі пункт. Прызыўны пункт.

3. Асобны раздзел, параграф афіцыйнага дакумента або якога‑н. іншага тэксту, які абазначаецца лічбай або літарай. Пункт першы. Пункт «а». □ [Сакратар абкома:] — У вашых мерапрыемствах ёсць пункт аб разгортванні сацыялістычнага спаборніцтва. Сіўцоў. // Пытанне, тэма, прадмет, пэўнае месца (думак, меркаванняў і г. д.). І калі мацерыны разважанні даходзілі да гэтага пункта, яна гатова была.. разарваць Маню на кавалкі... Васілевіч.

4. Асобны момант, перыяд у развіцці чаго‑н. Калі ўжо ўсе гэтыя справы.. дайшлі да кульмінацыйнага пункта і, можна сказаць, катастрафічнага завяршэння, .. [Тварыцкі] сам вельмі выразна сфармуляваў свае адчуванні і сваю свядомасць таго, што Слава радасная і не ведае пакутнага жыцця. Чорны. Ульянін прыход на Гармізаў хутар быў паваротным пунктам у Арыніным жыцці. Колас.

5. Адно з асноўных паняццяў матэматыкі, механікі, фізікі: месца, якое не мае вымярэнняў, не падлягае вызначэнню. Пункт перасячэння прамых. Пункт апоры. Пункт сонцастаяння.

6. Тэмпературная мяжа, пры якой рэчыва змяняе свой агрэгатны стан. Пункт замярзання. Пункт кіпення. Пункт плаўлення.

7. Адзінка вымярэння друкарскіх літар і прабельнага матэрыялу.

•••

Мёртвы пункт (спец.) — стан звёнаў механізма, калі яны знаходзяцца ў імгненнай раўнавазе.

Населены пункт — горад, пасёлак, вёска і пад., дзе жывуць людзі.

З пункту гледжання (погляду) якога або каго — у пэўных адносінах, разглядаючы што‑н. з таго або іншага боку.

Пункт погляду (гледжання) — пэўны погляд на рэчы, пэўныя адносіны да чаго‑н.

[Ням. Punkt.]

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

ГЕАФІ́ЗІКА (ад геа... + фізіка),

навука аб фіз. палях Зямлі, фіз. уласцівасцях і будове рэчыва Зямлі і працэсах ва ўсіх геасферах. У вузкім сэнсе геафізіка — навука аб фіз. з’явах у цвёрдых сферах: зямной кары, мантыі Зямлі, ядры Зямлі. Фіз. працэсы ў гідрасферы вывучае гідрафізіка, у атмасферы — фізіка атмасферы.

Элементы натуральнай геафізікі вядомы з прац антычных вучоных. У 17—19 ст. адкрыты асн. законы макраскапічнай фізікі, створаны першыя геафізічныя абсерваторыі. Як комплексная навука геафізіка аформілася ў сярэдзіне 19 ст., у сучасным разуменні — з 1960-х г. Асновы тэорыі і прыкладной геафізікі распрацавалі Д.Ф.Араго, (Францыя), Б.Гутэнберг (ЗША), Х.Джэфрыс (Вялікабрытанія), рус. і сав. вучоныя А.Дз.Архангельскі, Р.А.Гамбурцаў, М.С.Маладзенскі, А.М.Ціханаў, П.П.Лазараў, А.І.Забароўскі, У.У.Фядынскі, Э.Э.Фатыяды і інш. Геафізіка падзяляецца на фізіку Зямлі і пошукава-разведвальную геафізіку (гл. Геафізічная разведка). Фізіка Зямлі — тэарэт. навука, якая фіз. метадамі даследуе глыбінную будову і глыбінныя працэсы Зямлі. У ёй вылучаюцца буйныя раздзелы: геадынаміка, геатэрмія, гравіметрыя, сейсмалогія, геамагнетызм (гл. Зямны магнетызм), геаэлектрыка, даследаванні мінералаў і горных парод пры высокіх ціску і т-рах. Пошукава-разведвальная геафізіка — прыкладная навука, якая фіз. і матэм. метадамі даследуе будову верхняй часткі зямной кары з мэтай пошукаў і разведкі радовішчаў карысных выкапняў, для вырашэння задач гідрагеалогіі і інж. геалогіі. У ёй вылучаюцца структурная (пошукі нафтавых і газавых радовішчаў), рудная (радовішчаў руд і рудных вузлоў) і прамысл. геафізіка (даследаванні геал. разрэзу свідравін). У 1970-я г. вылучылася вылічальная геафізіка, мэта якой — назапашванне, захоўванне і аналіз інфармацыі з шырокім выкарыстаннем ЭВМ. Геафізіка цесна звязана з фіз.-матэм., тэхн. (аўтаматыка, электроніка, кібернетыка, касманаўтыка) і геал. навукамі (геалогія, геахімія, планеталогія, тэктоніка і інш).

На Беларусі геафізіка развіваецца з 1930-х г., калі пачалі праводзіць гравіметрычную і магнітную здымку. З 1950-х г. вядзецца планамернае геафіз. вывучэнне тэр. краіны. Даследаванні праводзяць з 1957 у Геолагаразведачным навукова-даследчым інстытуце, з 1960 у Плешчаніцкай геафізічнай абсерваторыі, з 1971 у Інстытуце геалагічных навук Нац. АН Беларусі, Геафізічнай экспедыцыі і інш. падраздзяленнях ВА «Беларусьгеалогія», а таксама ў Гомельскім дзярж. ун-це і БДУ.

Г.І.Каратаеў.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКУ́СТЫКА (ад грэч. akustikos слыхавы),

раздзел фізікі, які вывучае пругкія ваганні і хвалі ад самых нізкіх частот (умоўна ад 0 Гц) да самых высокіх (10​12—10​13 Гц), іх узаемадзеянне з рэчывам і выкарыстанне.

Першыя звесткі аб акустыцы — у Піфагора (6 ст. да н.э.). Развіццё акустыкі звязана з імёнамі Арыстоцеля, Г.Галілея, І.Ньютана, Г.Гельмгольца. Вынікі класічнай акустыкі падагульніў Дж.Рэлей. Значны ўклад у развіццё акустыкі зрабілі М.М.Андрэеў, А.А.Харкевіч, Л.М.Брэхаўскіх, Л.І.Мандэльштам, М.А.Леантовіч і інш. Новы этап развіцця акустыкі ў 20 ст. звязаны з развіццём электра- і радыётэхнікі, электронікі.

Агульная акустыка на аснове лінейных дыферэнцыяльных ураўненняў вывучае заканамернасці адбіцця і пераламлення акустычных хваляў на паверхні, распаўсюджванне, інтэрферэнцыю і дыфракцыю іх у суцэльных асяроддзях, ваганні ў сістэмах з засяроджанымі параметрамі. Акустыка рухомых асяроддзяў і статыстычная разглядаюць уплыў руху і нерэгулярнасцяў асяроддзя на распаўсюджванне, выпрамяненне і прыём гукавых хваляў. Фізічная акустыка вывучае залежнасць характарыстык хваляў ад уласцівасцей і стану асяроддзя; яе падраздзелы: малекулярная акустыка (паглынанне і дысперсія гуку), квантавая акустыка (разглядае пругкія хвалі як фаноны, пры нізкіх т-рах, ва ультра- і гіпергукавым дыяпазонах). Псіхафізіялагічная акустыка вывучае ўздзеянне гуку на чалавека. Асн. задача электраакустыкі (магнітаакустыкі) — распрацоўка гучнагаварыцеляў, мікрафонаў, тэлефонаў і інш. выпрамяняльнікаў і прыёмнікаў гуку. Гідраакустыка і атмасферная акустыка — выкарыстанне гуку для падводнай лакацыі, сувязі, зандзіравання атмасферы і інш. Задачы архітэктурнай і будаўнічай акустыкі — паляпшэнне распаўсюджвання і ўспрымання мовы і музычных гукаў у памяшканнях, памяншэнне шуму (гл. Акустыка архітэктурная, Акустыка музычная). Нелінейная акустыка, акустаоптыка і акустаэлектроніка вывучаюць узаемадзеянне акустычных хваляў з фіз. палямі і часціцамі. Новыя магчымасці візуалізацыі гукавых палёў дала акустычная галаграфія. На Беларусі даследаванні па акустыцы праводзяцца з 1950-х г. у ін-тах фіз. і фізіка-тэхн. профілю АН. Найб. значныя вынікі атрыманы Ф.І.Фёдаравым у тэорыі пругкіх хваляў у крышталях.

Літ.:

Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М., 1953;

Стретт Дж.В. (лорд Рэлей). Теория звука: Пер. с англ. Т. 1—2. 2 изд. М., 1955;

Скучик Е. Основы акустики: Пер. с нем. Т. 1—2. М., 1958—59;

Фёдоров Ф.И. Теория упругих волн в кристаллах. М., 1965;

Красильников В.А., Крылов В.В. Введение в физическую акустику. М., 1984.

А.Р.Хаткевіч.

т. 1, с. 218

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)