ВІ́РУСЫ

(ад лац. virus яд),

найдрабнейшыя субмікраскапічныя арганізмы няклетачнай будовы, якія складаюцца з нуклеінавай кіслаты і бялковай абалонкі (капсіды). Вірусы — унутрыклетачныя паразіты, якія выклікаюць вірусныя хваробы чалавека і жывёл, а таксама вірусныя хваробы раслін. вірус бактэрый — бактэрыяфагі. Адкрыты рус. вучоным Дз.І.Іваноўскім (1892), пашыраны ўсюды. Апісана каля 500 формаў вірусаў, якія шкодзяць цеплакроўнай жывёле і больш за 600 формаў вірусаў, што заражаюць вышэйшыя расліны. Вірусы існуюць у форме пазаклетачнай віруснай часціцы (вірыёна) і ўнутрыклетачнай (комплекс Вірус — клетка). Размнажаюцца толькі ў жывых клетках арганізма-гаспадара, выкарыстоўваючы іх ферментатыўны апарат. Нуклеінавая кіслата (РНК пераважна ў фітапатагенных вірусах і ДНК — у вірусах, якія шкодзяць чалавеку і жывёле) — носьбіт спадчыннасці і інфекцыйнасці. Форма вірусаў вызначаецца будовай бялковай абалонкі: палачка- або ніткападобная, сферычная, бацылападобная і інш.; памеры ад 15 да 2000 нм і больш. Вывучае вірусы — вірусалогія.

У вірусах адсутнічае ўласны абмен рэчываў і рэпрадукцыя цалкам залежыць ад метабалічнай актыўнасці клетак гаспадара. Пранікаючы ў клетку, яны накіроўваюць працэсы сінтэзу на рэпрадукцыю саміх вірусаў і ўводзяць дапаўняльную генетычную інфармацыю, якая адмоўна ўплывае на метабалізм клетак. У працэсе рэпрадукцыі фітапатагенных вірусаў узнікаюць генетычна змененыя формы (штамы), што мае вял. значэнне ў эвалюцыі. Вірусы раслін распаўсюджваюцца мех. шляхам, пыльцой, насеннем, з пасадачным матэрыялам, натуральнымі пераносчыкамі (нематодамі, тлямі, грыбамі і інш.).

Літ.:

Биология вирусов животных: Пер. с англ. Т. 1—2. М., 1977;

Гиббс А.,Харрисон Б. Основы вирусологии растений: Пер. с англ. М., 1978;

Власов Ю.И., Ларина Э.И. Сельскохозяйственная вирусология. М., 1982.

Ж.В.Блоцкая.

т. 4, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВАДАРО́Д,

гідраген (лац. Hydrogenium), H, хімічны элемент VII групы перыяд. сістэмы, ат. н. 1, ат. м. 1,00794. Прыродны вадарод складаецца з 2 ізатопаў ​1H (протый, 99,98% па масе) і ​2H ці Д (дэйтэрый, 0,02%), атрыманы штучныя радыеактыўныя ​3H ці Т (трытый) і вельмі няўстойлівы ​4H. У паветры колькасць вадароду 3,5·10​-6% па масе, у літасферы і гідрасферы — 1%, у вадзе — 11,19%, у складзе арганічных злучэнняў вадароду маюць усе раслінныя і жывёльныя арганізмы. Самы пашыраны элемент у космасе, складае каля палавіны масы Сонца, большасці зорак. Газ без колеру і паху, tпл -259,1 °C, tкіп -252,6 °C, шчыльн. вадкага 70,8 кг/м³ (-235 °C). Вадарод і яго сумесі з паветрам і кіслародам (гл. Грымучы газ) пажара- і выбухованебяспечныя.

Малекула вадароду двухатамная. Пры звычайных умовах узаемадзейнічае толькі з фторам і хлорам (на святле), пры павышаных т-рах у прысутнасці каталізатараў — з кіслародам (гл. Вада), галагенамі (гл. Галагенавадароды), азотам (гл. Аміяк). Са шчолачнымі і шчолачназямельнымі металамі, элементамі III—IV груп перыяд. сістэмы ўтварае гідрыды. Аднаўляе аксіды і галагеніды металаў да металаў, ненасычаныя вуглевадароды (гл. Гідрагенізацыя). Лёгка аддае электрон, у водных растворах пратон H​+ існуе ў выглядзе іона гідраксонію, утварае вадародную сувязь. У прам-сці атрымліваюць канверсіяй метану: CH4 + 2H2O = 4H2 + CO2; пры газіфікацыі вадкага і цвёрдага паліва (гл. Вадзяны газ).

Газападобны вадарод выкарыстоўваюць для сінтэзу аміяку, хлорыстага вадароду, метылавага і вышэйшых спіртоў, вуглевадародаў, для гідрагенізацыі тлушчу, таксама для зваркі і рэзкі металаў вадародна-кіслародным полымем, вадкі — як гаручае ў ракетнай і касм. тэхніцы, ізатопы — у атамнай энергетыцы.

І.В.Боднар.

т. 3, с. 434

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАБІЯЛО́ГІЯ

(ад гідра... + біялогія),

навука пра водныя арганізмы, іх узаемадзеянне паміж сабой і з умовамі асяроддзя, біял. прадукцыйнасць прэсных і акіянскіх вод. Займаецца таксама прыкладнымі пытаннямі (біягігіены, водазабеспячэння, біял. ачысткі вод і інш.). Адрозніваюць гідрабіялогію санітарную, тэхнічную і прамысловую.

У самаст. навуку вылучылася ў 2-й пал. 19 ст., калі з развіццём батанікі і заалогіі пачалі стварацца марскія і прэснаводныя біял. станцыі, была вызначана роля водных арганізмаў у працэсе ачышчэння вадаёмаў (ням. вучоныя А.Мюлер, Ф.Кон, рус. Н.П.Вагнер). Асновы рус. марскіх гідрабіял. даследаванняў закладзены ў 1900-я г. навук.-прамысл. экспедыцыямі М.М.Кніповіча, працамі С.А.Зярнова, К.М.Дзяругіна, Л.А.Зянкевіча і інш. Для развіцця прэснаводнай гідрабіялогіі вял. значэнне мелі працы У.М.Арнольдзі, А.Л.Бенінга, Г.Ю.Верашчагіна, В.Н.Варанкова, В.І.Жадзіна і інш.

На Беларусі даследаванні па гідрабіялогіі пачаліся ў 1904 у Аддзеле іхтыялогіі Рускага т-ва акліматызацыі жывёл і раслін. Вывучэнне вадаёмаў паглыбілася з утварэннем у 1928 н.-д. станцыі рыбнай гаспадаркі (з 1979 Бел. н.-д. і праектна-канструктарскі ін-т рыбнай гаспадаркі) і ў 1946 біял. станцыі БДУ на воз. Нарач. Н.-д. работа па гідрабіялогіі вядзецца таксама ў Ін-це заалогіі Нац. АН, БДУ, Цэнтр. НДІ комплекснага выкарыстання водных рэсурсаў, інш. ВНУ. Вызначана біял. і рыбагасп. прадукцыйнасць усіх асн. рэк і азёр, праведзена лімналагічная і рыбагасп. класіфікацыя прамысл. вадаёмаў (Г.Г.Вінберг, П.І.Жукаў, С.В.Кахненка, М.М.Драко, У.П.Ляхновіч, П.Р.Пятровіч, В.П.Якушка і інш.), ацэнка сан. стану вадаёмаў і здольнасць іх да біял. самаачышчэння (Вінберг, П.В.Астапеня, А.П.Астапеня і інш.). Распрацоўваюцца пытанні біял. прадукцыйнасці рэк, азёр і сажалак, вядзецца аналіз балансу і трансфармацыі рэчываў і энергіі ў водных экасістэмах, вывучаюцца функцыянальныя сувязі ў біяцэнозах (Г.А.Галкоўская, Л.М.Сушчэня, Н.М.Хмялёва).

Літ.:

Петрович П.Г. Очерк развития гидробиологических исследований в Белоруссии // Очерки по истории гидробиологических исследований в СССР. М., 1981.

Л.М.Сушчэня.

т. 5, с. 222

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯЛАГІ́ЧНАЕ ДЗЕ́ЯННЕ ІАНІЗАВА́ЛЬНЫХ ВЫПРАМЯНЕ́ННЯЎ,

біяхімічныя, фізіял., генет. і інш. змяненні, што ўзнікаюць у жывых клетках і арганізмах пад уздзеяннем іанізавальных выпрамяненняў. Дзеянне на арганізм залежыць ад віду і дозы выпрамянення, умоў апрамянення і размеркавання паглынутай дозы ў арганізме, фактару часу апрамянення, выбіральнага пашкоджання крытычных органаў, а таксама ад функцыян. стану арганізма перад апрамяненнем. Асн. вынікам узаемадзеяння іанізавальных выпрамяненняў са структурнымі элементамі клетак жывых арганізмаў з’яўляецца іанізацыя, якая прыводзіць да індуцыравання розных хім. і біял. рэакцый ва ўсіх тканкавых сістэмах арганізма. Радыебіял. працэсы, што ідуць на ўзроўні клеткі, ідэнтычныя для чалавека, жывёл і раслін. Адрозненне паміж імі выяўляецца на ўзроўні арганізма. Вылучаюць 2 асн. класы радыебіял. эфектаў: саматычныя (да іх належаць рэакцыі элементаў біясістэмы, што ідуць на працягу ўсяго антагенезу) і генет. (змены, якія рэалізуюцца ў наступных пакаленнях). Да саматычных належаць: радыяцыйная стымуляцыя, радыяцыйныя парушэнні, прамянёвая хвароба, паскарэнне тэмпаў старэння, скарачэнне працягласці жыцця, гібель арганізма. Генетычныя (ці мутагенныя) эфекты іанізавальных выпрамяненняў найбольш небяспечныя. Уздзейнічаючы на ДНК саматычных і генератыўных клетак, іанізавальныя выпрамяненні могуць выклікаць мутацыі, злаякасныя перараджэнні клетак. Ступень біялагічнага дзеяння іанізавальных выпрамяненняў залежыць і ад радыеадчувальнасці: маладыя арганізмы больш адчувальныя да выпрамяненняў, паўлятальная доза (D50) для большасці млекакормячых не перавышае 4—5, для некаторых раслін дасягае 30—40 і больш за сотню грэй. У арганізмах вылучаюцца крытычныя органы, якія першыя рэагуюць на іанізавальныя выпрамяненні: у чалавека і жывёл гэта касцявы мозг, эпітэлій страўнікава-кішачнага тракту, эндатэлій сасудаў, хрусталік вока, палавыя залозы; у вышэйшых раслін — утваральныя тканкі (мерыстэмы). Асобнае месца пры ўздзеянні на біясістэмы належыць малым дозам іанізавальных выпрамяненняў, якія пасля аварыі на Чарнобыльскай АЭС ператварыліся ў паўсядзённы фактар асяроддзя на забруджаных радыенуклідамі тэрыторыях Беларусі, Украіны, Расіі. Рэгулёўнае біялагічнае дзеянне іанізавальных выпрамяненняў шырока выкарыстоўваецца ў медыцыне (рэнтгенадыягностыка, радыетэрапія, выкарыстанне ізатопных індыкатараў і інш.), сельскай гаспадарцы (радыяцыйны мутагенез і інш.).

Літ.:

Кудряшов Ю.Б., Беренфильд Б.С. Основы радиационной биофизики. М., 1982;

Кузин А.М. Структурнометаболическая теория в радиобиологии. М., 1986;

Ярмоненко С.П. Радиобиология человека и животных. 3 изд. М., 1988;

Гродзинский Д.М. Радиобиология растений. Киев, 1989;

Гудков И.Н. Основы общей и сельскохозяйственной радиобиологии. Киев, 1991.

А.П.Амвросьеў.

т. 3, с. 170

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТА́РКТЫКА,

паўднёвая палярная вобласць Зямлі, якая ўключае мацярык Антарктыду і прылеглыя да яго ўчасткі Атлантычнага, Індыйскага і Ціхага акіянаў з астравамі. Мяжа Антарктыкі — паўн. размяшчэнне антарктычнага палярнага фронту, які праходзіць паміж 48° і 60° паўд. шыраты. Пл. каля 52,5 млн. км². Мацярык акружае шэльфавая паласа з глыбінямі да 500—600 м. Круты мацерыковы схіл на глыб. каля 3000 м зменьваецца шырокай паласой акіянскіх катлавін: Афрыканска-Антарктычнай, Аўстрала-Антарктычнай, Белінсгаўзена і Паўд.-Антыльскай з глыбінямі 5000—7000 м. Найглыбейшая частка — Паўд.-Сандвічаў жолаб (да 8428 м) з вял. сейсмічнасцю. На Пн ад катлавін Паўд.-Антыльскі і Афрыканска-Антарктычны хрыбты, Аўстрала-Антарктычнае і Паўд.-Ціхаакіянскае ўзвышша з тэктанічнымі разломамі і вулканічнымі масівамі. Антарктыка — найб. суровая вобласць Зямлі з нізкімі т-рамі паветра, снежнымі завірухамі, моцнымі вятрамі і туманамі. Мацярык — вобласць пастаяннага марозу. У субантарктычных раёнах сярэднія т-ры паветра самага цёплага месяца 10 °C, самага халоднага ад 0 да -10 °C. Ападкаў 300 — 500 мм каля ўзбярэжжа Усх. Антарктыды і да 1000 мм за год на паўн.-зах. узбярэжжы Антарктычнага п-ва і субантарктычных астравах. Т-ра антарктычных водаў ад -1,8 да 2 °C зімой і ад -1,2 да 3,5 °C летам. Салёнасць каля 34%о. На паўн. перыферыі Антарктыкі магутнае антарктычнае цыркумпалярнае цячэнне (пераносіць ваду на У), у 60-х шыротах сістэма стацыянарных цыкланічных кругаабаротаў антарктычнага цячэння (пераносіць ваду на З, уздоўж узбярэжжа Антарктыды). Плошча, занятая марскімі льдамі, у канцы зімы 18—19 млн. км², летам 2—3 млн. км². Характэрны сталовыя айсбергі. Арганічны свет антарктычнай сушы вельмі бедны, у акіянах — багаты. На астравах тундравая расліннасць (імхі, лішайнікі, парасонавыя, некаторыя злакі і інш.). Шмат марскіх птушак — пінгвіны, буравеснікі, паморнікі, альбатросы, белы сявец, конік антарктычны і інш. У марской фауне кіты (фінвал, гарбач, сіні кіт, сейвал), ластаногія (марскі слон, марскі леапард, цюлені Уэдэла, Роса, крабаед, маржы), донныя арганізмы (ігласкурыя губкі, імшанкі і інш.). Рыбы сям. нататэніевых, ёсць анчоўсы, камбала і інш.

Міжнародны дагавор 1959 устанаўлівае, што тэр. Антарктыкі — нейтральная і дэмілітарызаваная зона, якая выкарыстоўваецца ў мірных мэтах пры поўнай свабодзе навук. даследаванняў.

Літ.:

Трешников А.Ф. Антарктика: исследования, открытия. Л., 1980;

Слевич С.Б. Антарктика в современном мире. М., 1985.

т. 1, с. 383

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЕ́РАГ,

паласа ўзаемадзеяння паміж сушай і вадаёмам (мора, возера, вадасховішча і інш.) ці вадацёкамі (рака, канал і інш.). Мае надводную частку і падводны берагавы схіл, падзеленыя берагавой лініяй. Фарміруецца пад уздзеяннем гідралагічных (ветравыя хвалі, прылівы, адлівы, цячэнні, рачныя плыні і інш.), геал. (тэктанічныя рухі, састаў горных парод), геамарфал. (вышыня і формы рэльефу), антрапагенных (гідрабудаўніцтва, водакарыстанне) і інш. фактараў. Паводле вядучых фактараў у марскіх, рачных і азёрных берагах адрозніваюць абразійныя і эразійныя (гл. Абразія, Эрозія), акумулятыўныя і складаныя. Вывучае берагі геамарфалогія.

Бераг марскі з боку сушы абмежаваны лініяй, якой дасягае прыбой у час найб. прыліваў і штормаў, з боку мора — глыбінёй, дзе затухаюць рухі хваляў. У развіцці марскіх берагоў гал. роля належыць хвалям і прыбою. Яны разбураюць сушу і ўтвараюць абразійныя, часта з кліфам (уступам), берагі або перамяшчаюць і адкладаюць наносы, утвараючы акумулятыўныя берагі. Фарміруюцца яны таксама ў выніку дзейнасці рэк у вусці (дэльтавыя берагі) і пад уплывам занальных фактараў: у Арктыцы і Антарктыцы ад дзеяння вады на мёрзлы грунт і лёд узнікаюць тэрмаабразійныя, у трапічных морах жывыя арганізмы ствараюць біягенныя, пераважна каралавыя берагі (гл. Каралавыя пабудовы). Сучасныя берагі пачалі фарміравацца каля 6 тыс. гадоў назад, пасля позналедавіковай трансгрэсіі, калі ўзровень акіяна павысіўся на 90—100 м і заняў цяперашняе становішча. У выніку затаплення нізінных ускраін мацерыкоў утварыліся інгрэсійныя марскія берагі. Яны падзяляюцца на ледавіковыя (фіёрдавы, шхерны), эразійныя (рыясавы і ліманны), эолавыя (аральскі), структурна-дэнудацыйныя (далмацінскі), ватавыя і інш. (гл. таксама Інгрэсія, Фіёрд, Шхеры, Ліман, Ваты). Берагі рачныя развіваюцца пад уздзеяннем рэчышчавай плыні, якая выклікае бакавую і лінейную эрозію і ўтварэнне карэннага (тэрасавага) незатапляльнага берага або акумуляцыю наносаў і ўтварэнне акумулятыўнага (поймавага) затапляльнага берага. Рэкі Паўн. паўшар’я, якія цякуць на Пн, маюць правы стромкі, абразійны, левы нізкі, акумулятыўны бераг (пад уплывам Карыяліса сілы). У фарміраванні берагоў рэк вял. значэнне маюць апоўзні, абвалы, асыпкі і ўтварэнне яроў. Берагавыя працэсы на рэках паскараюцца пры змене базісу эрозіі.

На Беларусі берагі вадаёмаў і вадацёкаў пераважна акумулятыўныя, на іх развіты берагавыя валы і пляжы. Абразійныя берагі найб. уласцівы вадасховішчам (на некаторых да 50% даўжыні берагавой лініі) і рэкам. На многіх азёрах берагі амаль не перапрацоўваюцца, параслі лесам, хмызняком і травой. Балотная расліннасць стварае на іх сплавінныя берагі.

Літ.:

Берега. М., 1991.

Л.У.Мар’іна.

т. 3, с. 103

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

расці́, расту, расцеш, расце; расцём, расцяце; пр. рос, расла, ‑ло; незак.

1. У выніку жыццёвага працэсу павялічвацца, станавіцца большым, даўжэйшым, вышэйшым і пад. (пра жывыя істоты, арганізмы). Быў чэрвень, Калі ўсё расло і цвіло... Броўка. А ракіта тая як расці ды расці, — вырасла да самага неба. Якімовіч. Платон Назаравіч адхіляецца, адступае на крок; аглядае Алеся так, як бацька сына, якога доўга не бачыў, кажа з ухвалай: — А ты расцеш, хлопча. Шамякін. // З’явіўшыся, павялічвацца, падаўжацца (пра валасяное покрыва, поўсць). Скура над ілбом садрана, магчыма, і сапраўды не будуць расці валасы. Кулакоўскі. Падласы еў адну мякіну, Тарчком на ім расло шчацінне. Крапіва. // Станавіцца больш сталым, дарослым. [Самоцька:] — Я яго б’ю, катую, ушчуваю. Гэтак мой дзед вырас .., гэтак і маё дзіця расце. Чорны. // Праводзіць дзе‑н., у якіх‑н. умовах сваё дзяцінства, раннія гады. Расці ў вёсцы.

2. (1 і 2 ас. не ўжыв.). Павялічвацца колькасна, у памерах, у аб’ёме. Хутка расце новы дом. Расце народны дабрабыт. Растуць надоі малака. □ Буданы хутка раслі адзін пры адным. Мележ. Вялізарная наледзь расла вакол вадакачкі і цягнулася да самых рэек. Лынькоў. А ў лясах Палесся тым часам адзін за адным нараджаліся і раслі атрады народных мсціўцаў. Краўчанка. // Падыходзіць, паднімацца (пра цеста). // Узмацняцца, мацнець. Дружба паміж сябрамі расла і мацнела. Гамолка. «Арцель .. [Вольга Апалонаўна] збіраецца карміць ці што?» — не раз думаў Юрка, і ў яго душы расло нездавальненне ўсім гэтым парадкам жыцця ў доме Пеўніка. Навуменка. // Станавіцца больш гучным; мацней гучаць. Крык шырыўся, рос, палату ўсе двары, усю вуліцу. Лынькоў.

3. перан. Удасканальвацца, развівацца. [Капітан:] — Зайздрошчу ўрачам у шпіталі. Людзі там сапраўды працуюць, растуць. Алешка. [Сцяпан Рыгоравіч] працаваў у гандлі, працаваў і рос ад радавога прадаўца да старшыні райспажыўсаюза. Кірэйчык.

4. (1 і 2 ас. не ўжыв.). Распаўсюджвацца, існаваць (пра расліны, калі ідзе гутарка аб раёне іх пашырэння). У возеры растуць водарасці. Сасна расце на пясчаніках. // Знаходзіцца, быць (пра расліны ў працэсе росту). Каля хат раслі кучаравыя вішанькі; былі тут ігрушы і яблыні. Колас. [Абапал дарожкі] густа раслі рамонкі, півоні, астры і незабудкі. Ваданосаў. На ўбітай дарозе трава не расце. Прымаўка.

•••

Вялікі расці! — ужываецца як адказ дарослых на падзяку дзяцей.

На вярбе грушы растуць у каго гл. груша.

Расці на лес гледзячы — а) пра хуткі рост; б) пра гадаванне дзяцей без нагляду, без бацькоўскай навукі. Мікодым — удавец, мае дваіх дзяцей, якія ў як кажуць, растуць на лес гледзячы, бо бацька не вельмі іх даглядае. Марціновіч.

Расці як грыбы (пасля дажджу) — узнікаць хутка і ў вялікай колькасці.

У роце расце — а) пра адсутнасць апетыту, жадання есці; б) пра непрыемную на смак страву.

Хоць трава не расці — пра поўную абыякавасць да чаго‑н.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

АСМАТЫ́ЧНЫ ЦІСК, дыфузны ціск,

лішкавы гідрастатычны ціск раствору, які перашкаджае дыфузіі растваральніку праз паўпранікальную перагародку; тэрмадынамічны параметр. Характарызуе імкненне раствору да зніжэння канцэнтрацыі пры сутыкненні з чыстым растваральнікам пры сустрэчнай дыфузіі малекул растворанага рэчыва і растваральніку. Абумоўлены змяншэннем хімічнага патэнцыялу растваральніку ў прысутнасці растворанага рэчыва. Роўны лішкаваму вонкаваму ціску, які неабходна прыкласці з боку раствору, каб спыніць осмас. Вымяраецца ў паскалях.

Вымярэнні асматычнага ціску пачаў у 1877 ням. батанік В.Пфефер у растворы трысняговага цукру. Па яго даных галандскі хімік Я.Х.Вант-Гоф устанавіў у 1887, што залежнасць асматычнага ціску ад канцэнтрацыі цукру па форме супадае з Бойля-Марыёта законам для ідэальных газаў. Асматычны ціск вымяраюць з дапамогай асмометраў. Статычны метад вымярэння асматычнага ціску заснаваны на вызначэнні лішкавага гідрастатычнага ціску па вышыні слупка вадкасці H пасля ўстанаўлення стану раўнавагі пры роўнасці вонкавых ціскаў PА і PБ; дынамічны метад зводзіцца да вымярэння скорасці V усмоктвання і выціскання растваральніку з асматычнай ячэйкі пры розных значэннях лішкавага ціску P = PА  – PБ з наступнай інтэрпаляцыяй атрыманых даных да V=0 пры лішкавым ціску Δp, роўным асматычнаму ціску. Па велічыні асматычнага ціску распазнаюць: ізатанічныя, або ізаасматычныя, растворы, якія маюць аднолькавы асматычны ціск (незалежна ад саставу), гіпертанічныя з больш высокім Асматычным ціскам і гіпатанічныя растворы з больш нізкім асматычным ціскам.

Асматычны ціск адыгрывае важную ролю ў жыццядзейнасці жывых клетак і арганізмаў. У клетках і біял. вадкасцях ён залежыць ад канцэнтрацыі раствораных у іх рэчываў. Па велічыні асматычнага ціску вадкасцяў унутр. асяроддзя арганізма (кроў, гемалімфа і інш.) водныя арганізмы падзяляюцца на гіпер-, гіпа- і ізаасматычныя. Сярэдняя велічыня і дыяпазон асматычнага ціску ў розных арганізмаў розныя і залежаць ад віду і ўзросту арганізма, тыпу клетак і асматычнага ціску навакольнага асяроддзя (напр., асматычны ціск клетачнага соку наземных органаў балотных раслін 0,2—1,6 МПа, у стэпавых 0,8—0,4, у дажджавых чарвякоў 0,36—0,48, у прэснаводных рыб 0,6—0,66, у акіянічных касцістых рыб 0,78—0,85, акулавых 2,2—2,3, млекакормячых 0,66—0,8 МПа). У гіперасматычных арганізмаў (прэснаводныя жывёлы, некаторыя марскія храстковыя рыбы — акулы, скаты; усе расліны) унутр. Асматычны ціск перавышае асматычны ціск навакольнага асяроддзя, таму іоны могуць актыўна паглынацца арганізмам і ўтрымлівацца ў ім, а вада паступае праз біял. мембраны пасіўна, у адпаведнасці з асматычным градыентам. У гіпаасматычных жывёл (касцістыя рыбы, некаторыя марскія паўзуны, птушкі) асматычны ціск крыві меншы за асматычны ціск навакольнага асяроддзя. Адноснае пастаянства Асматычнага ціску забяспечваецца водна-салявым абменам праз осмарэгулявальныя органы (гл. ў арт. Осмарэгуляцыя).

Літ.:

Курс физической химии. Т.1—2. 2 изд. М., 1970—73;

Пасынский А.Г. Коллоидная химия. 3 изд. М., 1968;

Гриффин Д., Новик Эл. Живой организм: Пер. с англ. М., 1973.

т. 2, с. 38

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРЫБЫ́

(Mycota),

група гетэратрофных бесхларафільных арганізмаў, разнастайных паводле будовы, памераў і спосабу жыцця; адно з царстваў жывой прыроды. Спалучаюць прыкметы раслін (нерухомасць, верхавінкавы тып росту, наяўнасць клетачных сценак і інш.) і жывёл (гетэратрофны тып абмену, наяўнасць хіціну, утварэнне мачавіны і глікагену і інш.). Маюць асобы цыкл развіцця (змена ядзерных фаз, дыкарыятычны стан, разнаякаснасць ядзер у межах адной клеткі — гетэракарыёз і інш.). Раней грыбы адносілі да ніжэйшых раслін. Вядома больш за 100 тыс. відаў грыбоў, пашыраных па ўсім зямным шары. Падзяляюцца на 3 аддзелы: ааміцэты, слізевікі і сапраўдныя грыбы. Сярод апошніх вылучаюць аскаміцэты, базідыяльныя грыбы, зігаміцэты, недасканалыя грыбы, хітрыдыяміцэты.

Вегетатыўнае цела большасці грыбоў уяўляе сабой міцэлій (грыбніцу), які складаецца з адна- ці шматклетачных разгалінаваных тонкіх ніцей — гіфаў, што ў працэсе развіцця ўтвараюць строму або пладовыя целы рознай марфалогіі. Арганізмы ніжэйшых грыбоў (слізевікі, хітрыдыяміцэты) прадстаўлены голымі плазмодыямі. У жыццёвым цыкле грыбоў магчымы розныя стадыі развіцця (плеямарфізм). Аднаклетачны стан назіраецца ў перыяд размнажэння грыбоў (напр., у спор). Грыбы размнажаюцца вегетатыўным, бясполым і палавым спосабамі. У аснову вызначэння сістэматычнага стану грыбоў пакладзены асаблівасці будовы грыбнога цела, палавога і бясполага споранашэння і формы пладовых цел. Вегетатыўнае размнажэнне ажыццяўляецца кавалкамі міцэлію (шапкавыя грыбы), пачкаваннем (дрожджы), асобнымі клеткамі — аідыямі (галасумчатыя), гемамі і хламідаспорамі (галаўнёвыя грыбы), бясполае — з дапамогай спор, што ўтвараюцца на асобных клетках міцэлію. Споры могуць фарміравацца эндагенна, унутры шарападобна пукатых канцоў гіфаў (спарангіяспоры, зааспоры; у ніжэйшых грыбоў) або экзагенна (канідыяспоры; у вышэйшых і некат. ніжэйшых грыбоў). Для палавога размнажэння ўласціва зліццё аднолькавых або розных паводле памераў гамет (у ніжэйшых грыбоў), яйцаклеткі і сперматазоіда (у ааміцэтаў), вегетатыўных клетак з аднолькавымі або рознымі палавымі знакамі (у зігаміцэтаў), антэрыдыю і архікарпа з утварэннем сумкі (у аскаміцэтаў) або шляхам саматагаміі з утварэннем базідый (у базідыяміцэтаў). Утварэнню сумак і базідый звычайна папярэднічае развіццё на міцэліі пладовых цел — спец. спараносных органаў. У аскаміцэтаў гэта клейстатэцый, перытэцый, апатэцый і інш., у базідыяльных грыбоў распасцёртыя, палачка-, куста-, шара-, зоркападобныя і інш. пладовыя целы.

У прыродна-кліматычных зонах Беларусі трапляюцца прадстаўнікі ўсіх сістэматычных груп грыбоў, якія спецыялізаваны да розных экалагічных умоў існавання. Напр., агарыкальныя, афілафаральныя, гастэраміцэты і інш. сапрабіёнты развіваюцца ў лясах на гнілой драўніне, лясным подсціле, плесневыя грыбы — на прадуктах харчавання, кармах жывёл. Мучніста-расяныя грыбы, іржаўныя, перанаспоравыя, хітрыдыевыя, гельмінтаспорый, фузарый, фітафтора, макраспорый, склератынія і інш. групы фітапатагенных грыбоў паразітуюць на збожжавых, агароднінных, пладова-ягадных культурах. Вядома больш за 200 відаў ядомых грыбоў і каля 40 відаў ядавітых грыбоў. Грыбы мінералізуюць раслінныя рэшткі ў глебе, патагенныя грыбы выклікаюць хваробы раслін, жывёл і чалавека. Грыбы — актыўныя накапляльнікі радыенуклідаў. Многія віды плесневых грыбоў выкарыстоўваюць у мікрабіял. прам-сці для атрымання вітамінаў, антыбіётыкаў, ферментаў, стэроідных гармонаў, дрожджы — у хлебапячэнні, піваварэнні, вінаробстве. Шэраг відаў грыбоў культывуюць (шампіньёны, вешанкі, труфелі). Вывучае грыбы мікалогія.

Літ.:

Беккер З.Э. Физиология грибов и их практическое использование. М., 1963;

Эволюция и систематика грибов: Теорет. и прикладные аспекты. Л., 1984;

Сержанина Г.И., Змитрович И.И. Микромицеты: Иллюстрир. пособие для биологов. Мн., 1978.

В.В.Карпук.

т. 5, с. 471

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АКІЯ́Н, Сусветны акіян (ад грэч. Ōkeanos вялікая рака, якая абцякае Зямлю),

неперарыўная водная абалонка Зямлі, якая акружае мацерыкі і астравы, мае агульны салявы састаў. Пл. 361,06 млн. км². Акіян займае каля 70,8% зямной паверхні (60,7% Паўн., 80,9% Паўд. паўшар’яў). Сярэдняя глыб. 3795 м, макс. 11 022 м (Марыянскі жолаб у Ціхім ак.). Складае 94% гідрасферы. Змяшчае 1370 млн. км³ вады (гл. табл.), што складае 0,1% ад аб’ёму зямнога шара. Паводле фізіка-геагр. уласцівасцяў акваторыя акіяна падзяляецца на Ціхі акіян, Атлантычны акіян, Індыйскі акіян, Паўночны Ледавіты акіян. Умоўна вылучаецца Паўднёвы акіян вакол Антарктыды. Вывучае акіян акіяналогія.

Рэльеф і геалагічная будова дна. У рэльефе дна вылучаюцца 4 планетарныя морфаструктуры. Падводная ўскраіна мацерыкоў — затопленая частка мацерыковых платформаў з адносна спакойным тэктанічным рэжымам. Характарызуецца кантынентальным тыпам зямной кары магутнасцю да 35 км. Займае глыбіні да 1400—3200 м. Падзяляецца на шэльф, мацерыковы схіл і мацерыковае падножжа. На большай частцы перыферыі Ціхага ак., на ПнУ Індыйскага, а таксама ў морах Карыбскім, Міжземным і Скоша (Скотыя) паміж мацерыковым падножжам і ложам акіяна выяўлена пераходная зона з геасінклінальным тыпам зямной кары (гл. Геасінкліналь), дзе адбываюцца сцісканне зямной кары, інтэнсіўныя вертыкальныя рухі, сейсмічнасць і вулканізм, якія па-рознаму праяўляюцца ў межах зоны. Да яе прымеркаваны глыбакаводныя жалабы. Адзін з гал. элементаў рэльефу і тэктанічных структур дна — ложа акіяна. Займае самыя глыбокія, акрамя глыбакаводных жалабоў, часткі (4000—7000 м). Яму ўласцівы тонкая (да 8 км) акіянская кара, асаблівы тып вулканізму і разломнай тэктонікі, слабая сейсмічнасць, запаволеныя адмоўныя рухі. Рэльеф дна ўтвораны чаргаваннем вял. катлавін і падняццяў. Над ложам акіяна на выш. 4—5 км, зрэдку да 10 км узнімаюцца сярэдзінна-акіянскія хрыбты. Яны распасціраюцца праз усе акіяны, маюць рыфтагенальны тып зямной кары, характарызуюцца лінейнымі магнітнымі анамаліямі, высокай сейсмічнасцю і вулканізмам. У рэльефе спалучаюцца рыфтавыя даліны і хрыбты, папярочныя разломы, вулканічныя масівы, плато, гаёты.

Паходжанне акіяна. Мяркуюць, што воды акіяна маглі ўтварыцца пры дэферэнцыяцыі мантыі Зямлі. Паводле тэорыі тэктонікі пліт, акіяны ўзніклі пры распадзе стараж. мацерыкоў, калі часткі мацерыкоў рассоўваліся ў процілеглыя бакі. Лічыцца, што Атлантычны ак. утварыўся каля 160—180 млн. гадоў назад (юрскі перыяд), Ціхі і Індыйскі ак. ўзніклі раней.

Донныя адклады. Магутнасць акіянскіх адкладаў вагаецца ад 2000—3000 м у прымацерыковых зонах да дзесяткаў метраў на сярэдзіннаакіянскіх хрыбтах. Адзначаны 3 зоны макс. магутнасці адкладаў: каля экватара, на Пн ад 40° паўн. ш. і на Пд ад 40° паўд. ш. Узрост асадкавай тоўшчы мяняецца ад восевай часткі сярэдзіннаакіянскіх хрыбтоў (пліяцэн-плейстацэн) да краявых частак акіяна, дзе яны больш старажытныя. Сярод донных адкладаў вылучаюць тэрыгенныя, якія ўтвараюцца ў выніку размывання сушы, біягенныя (карбанатныя і крамяністыя), вулканагенныя, палігенныя (змешанага паходжання) і аўтыгенныя (аалітавыя і жалеза-марганцавыя канкрэцыі). Найб. плошчы дна акіяна займаюць карбанатныя глеі (каля 150 млн. км²) і глыбакаводная чырвоная гліна (больш за 110 млн. км², гл. Марскія адклады).

Хімізм і салёнасць вады. У акіянскай вадзе растворана каля 80 хім. элементаў, сярэдняя канцэнтрацыя іх каля 35 г/л. Усяго ў акіяне растворана 5·10​22 г соляў. Салёнасць вады выражаецца ў праміле, абазначаецца ‰ (1‰ адпавядае 1 г/1 кг). Сярэдняя салёнасць вады на паверхні 34,7‰, У адкрытым акіяне — ад 31,4‰ у Паўн. Ледавітым ак. да 37,25‰ у трапічных водах Атлантычнага ак., каля берагоў Антарктыды 33,93‰, на экватары 32—34‰. У Паўн. паўшар’і салёнасць акіяна ніжэйшая, чым у Паўднёвым. Пераважаюць солі хларыдаў, натрыю і магнію (88,7‰) і сульфатаў магнію, кальцыю і калію (10,9‰; гл. таксама Марская вада). У вадзе раствораны таксама кісларод (паступае з атмасферы і ўтвараецца зялёнымі водарасцямі), вуглякіслы газ і інш., ад якіх залежыць жыццё арганізмаў у акіяне. У халоднай вадзе растворанага кіслароду больш (у палярных шыротах у прыпаверхневых водах да 10 мл/л, у цёплых трапічных шыротах 4 мл/л). На глыб. 1000 м і глыбей растворанага ў вадзе кіслароду 2—3 мл/л. У маларухомых частках акіяна на глыбіні намнажаецца серавадарод ад перагнівання арган. рэшткаў.

Тэмпературны рэжым. Гал. крыніцай цяпла, што вызначае т-ру вады акіяна, з’яўляецца сонечная радыяцыя, 3 — 45% якой у залежнасці ад вышыні Сонца над гарызонтам і ад хвалявання адбіваецца ў сусветную прастору (гл. Альбеда). Больш за 99% сонечнай радыяцыі, якая ўвайшла ў ваду акіяна, паглынаецца ў яе верхніх слаях. Акіян з’яўляецца акумулятарам цяпла і моцна ўплывае на клімат Зямлі. Сярэднегадавая т-ра вады на паверхні акіяна 17,5 °C (у Паўн. паўшар’і яна вышэй, чым у Паўд.). Самы цёплы Акіян — Ціхі (19,4 °C), самы халодны — Паўн. Ледавіты (-0,8 °C). Тэрмічны экватар у акіяне ссунуты на Пн ад геаграфічнага (сярэдняя т-ра вады складае 26—28 °C), у палярных шыротах яна блізкая да нуля або адмоўная (-1,5, -1,9 °C). З глыбінёй т-ра зніжаецца, на глыб. 1000 м яна ніжэй за 5 °C, у прыдоннай зоне складае 1,4—1,8 °C, у палярных абласцях ніжэй за 0 °C (-0,5, -1,5 °C).

Цыркуляцыя вады. У акіяне існуе адзіная сістэма ўстойлівых цячэнняў (гл. Марскія цячэнні), якая забяспечвае перанос і ўзаемадзеянне водаў. Асн. паверхневыя цячэнні ўзнікаюць пад уплывам пастаянных вятроў. Цячэнні захопліваюць масы вады да глыб. 150—200 м і ўтвараюць антыцыкланальныя кругавароты ў трапічных і субтрапічных шыротах (пасатныя цячэнні) і цыкланальныя ва ўмераных і палярных шыротах. Паверхневыя цячэнні, накіраваныя ад экватара да полюсаў, цёплыя, у адваротным напрамку — халодныя. Прынос да берагоў мацерыкоў цёплай вады цячэннямі і награванне паветр. масаў над імі моцна ўплываюць на клімат прыбярэжных і далёкіх ад акіяна краін (зімовыя адлігі на Беларусі тлумачацца прытокам цёплага паветра з Атлантычнага ак.). Каля ўзбярэжжаў мацерыкоў назіраецца выхад на паверхню глыбінных водаў акіяна (гл. Апвелінг), якія багатыя пажыўнымі рэчывамі і спрыяюць развіццю разнастайных арганізмаў. Падняцце водаў на паверхню ў адкрытым акіяне адбываецца ў месцах разыходжання цячэнняў (у зонах дывергенцыі) і ў цыкланальных кругаваротах. Апусканне водаў звязана з канвергентнымі зонамі, дзе сутыкаюцца цячэнні, і з антыцыкланальнымі кругаваротамі. Глыбінныя цячэнні ўзнікаюць ад рознай шчыльнасці вады. У прыдоннай зоне існуюць арктычныя і асабліва развітыя антарктычныя цячэнні, якія дасягаюць 30—40° паўн. ш.

Хвалі ў акіяне выклікаюцца вятрамі, хуткай зменай атм. ціску (гл. Сейшы), моратрасеннямі (гл. Цунамі). Прылівы (і адлівы) абумоўлены прыцяжэннем Месяца і Сонца (прыцяжэнне Месяца ўдвая большае за сонечнае). У адкрытым акіяне вышыня прыліваў каля 1—2 м, у залівах да 18 м (Фанды на Атлантычным узбярэжжы Канады).

Арганічны свет. Жывыя арганізмы насяляюць акіян ад паверхні да найбольшых глыбіняў. Паводле месцаў існавання адрозніваюць планктон (пасіўнаплаўныя), нектон (актыўнаплаўныя) і бентас (донныя арганізмы). Па экалагічных умовах вылучаюцца супольніцтвы літаралі і пелагіялі. У акіяне існуе каля 160 тыс. відаў жывёл: 80 тыс. малюскаў, больш за 20 тыс. ракападобных, 16 тыс. рыб, каля 15 тыс. прасцейшых і інш. З млекакормячых ёсць ластаногія і кітападобныя (самая буйная жывёла на Зямлі — сіні кіт). У акіяне і на яго ўзбярэжжах жывуць шматлікія віды птушак. З 15 тыс. відаў раслін найбольш аднаклетачных водарасцяў (да 80% фітамасы акіяна).

Прыродныя рэсурсы. Рэсурсы акіяна падзяляюцца на біялагічныя (харчовыя), сыравінныя (мінеральныя, хімічныя, водныя), энергетычныя і рэкрэацыйныя. Штогод у акіяне здабываюць каля 75—80 млн. т морапрадуктаў (84,5% складае рыба, 11,4% беспазваночныя, 4,1% водная расліннасць). Здабываюць (% ад сусветнай здабычы) нафты каля 30, газу 20, брому 90, ільменіту 80, магнію 60, цыркону і рутылу 50, касітэрытаў 40, шмат жал. руды, золата, плаціны, алмазаў і інш. Мае значную колькасць энергіі розных відаў: прыліваў (ацэньваецца ў 1 млрд. кВт), цячэнняў, хваляў, розніцы т-ры і салёнасці і інш., агульная магутнасць якой прыкладна 200 млрд. т умоўнага паліва, што ў 20 разоў перавышае гадавую патрэбу ў свеце. Пабудаваны прыліўныя (у Францыі, Расіі, Кітаі і інш.) і гідратэрмальная (у Кот-д’Івуары) электрастанцыі. Вял. гасп. значэнне мае марскі транспарт.

Ахова прыроднага асяроддзя. Рэгламентацыя дзейнасці чалавека ў акіяне прадугледжана шэрагам міжнар. пагадненняў і заканадаўствам асобных дзяржаў. Міжнар. права ўсталёўвае рэжым работы па некалькіх кірунках: рэжым акваторый; гандлёвае суднаходства; ваеннае мараплаванне; навук. даследаванні; дно і нетры; ахова асяроддзя (захаванне марскога асяроддзя і экалагічнай раўнавагі пры выкарыстанні рэсурсаў акіяна, прадухіленне забруджвання, асабліва радыенукліднага, падтрыманне біял., хім. і фіз. суадносін, недапушчальнасць прычынення шкоды фауне, флоры, дну, атмасферы і касм. прасторы над акіянам).

Літ.:

Леонтьев О.К. Физическая география Мирового океана. М., 1982;

Слевич С.Б. Океан: ресурсы и хозяйство. Л., 1988;

Израэль Ю.А., Цыбань А.В. Антропогенная экология океана. Л., 1989;

Богданов Д.В. Океаны и моря накануне XXI века. М., 1991;

Океанографическая энциклопедия: Пер. с англ. Л., 1974.

А.М.Вітчанка.

Папярочны профіль акіяна.
Да арт. Акіян. Тыпы морфаскульптур дна: 1 — абразійна-акумулятыўныя і шэльфавыя няхвалевыя; 2 — гравітацыйныя (дэнудацыйныя і акумулятыўныя); 3 — абісальныя акумулятыўныя; 4 — абісальныя акумулятыўна-дэнудацыйныя ў межах горнага рэльефу; 5 — абісальныя акумулятыўна-дэнудацыйныя, створаныя глыбіннымі доннымі цячэннямі; 6 — біягенныя (каралавыя рыфы).

т. 1, с. 193

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)