ГАЗАРАЗРА́ДНЫЯ КРЫНІ́ЦЫ СВЯТЛА́,

газаразрадныя прылады, у якіх электрычная энергія пераўтвараецца ў аптычнае выпрамяненне пры праходжанні току праз рэчыва ў газападобным стане. Маюць шкляную, кварцавую або метал. (з празрыстым акном) абалонку з герметычна ўпаянымі электродамі, запоўненую газам (звычайна інертным) або парай металаў (напр., ртуці) пад ціскам. Бываюць газаразрадныя крыніцы святла з адкрытымі электродамі, якія працуюць у паветры або струмені газу (напр., вугальная дуга).

У газаразрадных крыніцах святла адбываецца тлеючы або дугавы разрад (гл. Электрычныя разрады ў газах, Іанізацыя). Імпульсныя лямпы з ксенонавым запаўненнем (трубчастыя, прамыя, спіральныя і U-падобныя) выкарыстоўваюцца для напампоўкі лазераў, імпульснага асвятлення пры фатаграфаванні, у страбаскапіі, аптычнай лакацыі і інш. Дугавыя ксенонавыя лямпы трубчастай або сферычнай формы маюць высокую светлавую аддачу і спектр выпрамянення, блізкі да спектра сонечнага святла ў бачнай вобласці. Выкарыстоўваюцца для асвятлення вял. плошчаў, стадыёнаў і інш., а таксама ў святлокапіравальных і фоталітаграфічных апаратах, праекцыйнай апаратуры. Дугавыя натрыевыя лямпы ў спалучэнні з ртутнымі выкарыстоўваюцца для асвятлення дарог, тунэляў, аэрадромаў і інш. У якасці эталонных крыніц святла ў атамна-абсарбцыйных і атамна-флюарэсцэнтных спектрафатометрах, інтэрферометрах, рэфрактометрах і інш. прыладах выкарыстоўваюць спектральныя лямпы.

Ф.А.Ткачэнка.

т. 4, с. 429

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

«ДЗІЦЯ́ЧАЯ ЭНЦЫКЛАПЕ́ДЫЯ»,

шматтомнае універсальнае энцыклапедычнае выданне для дзяцей. Выдадзена ў 1958—77 у Маскве выд-вам «Вялікая Савецкая Энцыклапедыя». Выйшлі 3 выданні: 1-е ў 10 т. (1958—62), 2-е і 3-е ў 12 т. (1964—69 і 1971—77). Прынцып пабудовы ўсіх выданняў «Дз.э.» — тэматычна-алфавітны. Кожны том мае ўласную назву і складаецца з некалькіх раздзелаў (т. 1 — «Зямля», т. 2 — «Свет нябесных цел. Лікі і фігуры». т. 3 — «Рэчывы і энергія», т. 4 — «Расліны і жывёлы» і г.д.), вызначаецца навуковай дакладнасцю, даступнасцю выкладу матэрыялу, багата ілюстравана.

Сярод інш. энцыклапедычных даведнікаў для дзяцей вылучаюцца энцыклапедыя «Што такое. Хто такі» (т. 1—2, 1968, 2-е выд., г 1—3, 1975—78), а таксама даведнікі для школьнікаў сярэдняга і старэйшага ўзросту: «Энцыклапедычны слоўнік юнага спартсмена» (1979), «Энцыклапедычны слоўнік юнага астранома» (1980, 2-е выд. 1986), «Энцыклапедычны слоўнік юнага хіміка» (1982, 2-е выд. 1990), «Энцыклапедычны слоўнік юнага мастака» (1983), «Энцыклапедычны слоўнік юнага літаратуразнаўца» (1987) і інш. (для юных земляробаў, фізікаў, матэматыкаў, музыкантаў, біёлагаў).

В.К.Шчэрбін.

т. 6, с. 122

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫРАДЖЭ́ННЕ ў квантавай механіцы, уласцівасць некаторых фізічных велічынь, што апісваюць фіз. сістэму (атам, малекулу і інш.), мець аднолькавае значэнне для розных станаў сістэмы. Колькасць станаў сістэмы, якім адпавядае адно і тое ж значэнне пэўнай фіз. велічыні, наз. кратнасцю выраджэння дадзенай фіз. велічыні. Напр., калі не ўлічваць эл.-магн. і слабыя ўзаемадзеянні («выключыць» іх), то ўласцівасці пратона і нейтрона будуць аднолькавыя і іх можна разглядаць як 2 станы адной часціцы (нуклона), якія адрозніваюцца толькі эл. зарадам.

Найб. важнае выраджэнне ўзроўняў энергіі: сістэма мае пэўнае значэнне энергіі, але пры гэтым можа быць у розных станах. Напр., свабодная часціца мае бясконцакратнае выраджэнне энергіі: энергія вызначаецца модулем імпульсу, а напрамак імпульсу можа быць любым. Пры руху часціцы ў знешнім сілавым полі выраджэнне можа поўнасцю або часткова здымацца, напр., у магн. полі выяўляецца залежнасць энергіі ад напрамку магн. моманту часціцы: пры ўзаемадзеянні з полем часціцы атрымліваюць дадатковую энергію і ўзроўні энергіі «расшчапляюцца» (гл. Зеемана з’ява). Расшчапленне ўзроўняў энергіі часціц у знешнім эл. полі гл. ў арт. Штарка з’ява.

Л.М.Тамільчык.

т. 4, с. 319

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГРАНАТАМЁТ,

пераважна пераносная агнястрэльная зброя, прызначаная для паражэння браніраваных цэляў, жывой сілы і тэхнікі праціўніка гранатай.

Гранатамёты бываюць: дынамарэактыўныя (пач. скорасць гранаце надае энергія газаў, якія ўтвараюцца пры згаранні стартавага зарада ў ствале), рэактыўныя (скорасць гранаты забяспечваецца сваім рэактыўным рухавіком), актыўныя і актыўна-рэактыўныя (скорасць забяспечваецца зарадам, які згарае ў ствале, закрытым з казённай часткі); ручныя, вінтовачныя (ружэйныя), станковыя і інш.; процітанкавыя і проціпяхотныя; гладкаствольныя і наразныя, з раздымнымі і складанымі стваламі. Ручныя прыстасаваны для стральбы з рук або сошак; вінтовачныя — для стральбы з вінтоўкі або аўтамата пераважна проціпяхотнымі вінтовачнымі гранатамі за кошт энергіі халастога або баявога патрона. Эфектыўная і прыцэльная далёкасць стральбы вінтовачных гранатамётаў адпаведна да 100 і 400 м, ручных да 500 і 1000 м, станковых да 1 і 2 км; калібр ручных гранатамётаў 30—112 мм, маса звычайна 8 кг; баявая скарастрэльнасць станковых да 100 стрэлаў за мінуту (такія гранатамёты могуць устанаўлівацца на танках, бронетранспарцёрах, баявых машынах пяхоты, верталётах, катэрах і інш.). Ручныя гранатамёты з’явіліся ў гады 2-й сусв. вайны: «Базука» (ЗША), фаустпатрон (аднаразавага дзеяння, Германія).

т. 5, с. 405

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНАЛІТЫ́ЧНАЯ МЕХА́НІКА,

раздзел механікі, у якім рух сістэм матэрыяльных пунктаў (цел) даследуецца пераважна метадамі матэм. аналізу. Вывучае складаныя мех. сістэмы (машыны, механізмы, сістэмы часціц і інш.), рух якіх абмежаваны пэўнымі ўмовамі (гл. Сувязі механічныя).

Галаномная сістэма (мех. сувязі залежаць толькі ад каардынат і часу) у патэнцыяльным полі характарызуецца функцыяй Лагранжа L=T-U, дзе T — кінетычная і U — патэнцыяльная энергія сістэмы. Калі вядома канкрэтная залежнасць L=L(q,,t), дзе q — абагульненыя каардынаты, — абагульненыя скорасці, t — час, то пры дапамозе прынцыпу найменшага дзеяння можна знайсці дыферэнцыяльныя ўраўненні руху мех. сістэмы. Іх інтэграванне пры зададзеных пачатковых умовах дазваляе вызначыць закон руху сістэмы, г.зн. залежнасці qi=qi(t), дзе i=1, 2, ..., S, S — лік ступеняў свабоды.

Асн. Палажэнні аналітычнай механікі распрацаваў Ж.Лагранж (1788), значны ўклад зрабілі У.Гамільтан, М.В.Астраградскі, П.Л.Чабышоў, А.М.Ляпуноў, М.М.Багалюбаў, А.Ю.Ішлінскі і інш. Метады аналітычнай механікі далі магчымасць выявіць сувязь паміж асн. паняццямі механікі, оптыкі і квантавай механікі (оптыка-мех. аналогіі). Абагульненне варыяцыйных прынцыпаў механікі на неперарыўныя квантава-рэлятывісцкія сістэмы склала матэм. аснову тэорыі поля. Дасягненні аналітычнай механікі садзейнічалі развіццю балістыкі, нябеснай механікі, тэорыі ўстойлівасці, тэорыі аўтам. кіравання і інш.

Літ.:

Кильчевский Н.А. Курс теоретической механики. Т. 2. М., 1977.

А.І.Болсун.

т. 1, с. 334

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЛЮКО́ЗА,

вінаградны цукар, C6H12O6, монацукрыд з групы гексоз. Самы пашыраны ў прыродзе вуглявод; трапляецца ў свабодным стане (у мёдзе, пладах, кветках і інш. органах раслін, у тканках жывёл і чалавека), уваходзіць у састаў алігацукрыдаў, поліцукрыдаў, гліказідаў, глікапратэідаў, глікаліпідаў, антацыянаў і інш. У біял. аб’ектах існуе ў адной з шматлікіх хіральных формаў (стэрэаізамераў) у выглядзе двух анамераў α- і β-D-глюкозы. Выконвае ролю папярэдніка ў сінтэзе іншых цукроў (D-фруктозы, D-манозы і цукрозы), некат. буд. блокаў нуклеінавых к-т і ліпідаў. У жывых клетках глюкоза служыць гал. крыніцай энергіі. У выніку паслядоўнага шэрагу рэакцый акіслення глюкоза ператвараецца ў розныя вытворныя цукроў з меншай даўжынёй ланцуга (гліколіз, браджэнне, пептозафасфатны шлях) і ў канчатковым выніку распадаецца да CO2 і H2O (аэробнае дыханне). Вызваленая энергія назапашваецца ў форме адэназінтрыфасфату. Распад глюкозы можа ісці і па інш. (другасным) шляху з утварэннем D-глюкуронавай к-ты, якая садзейнічае абясшкоджванню некат. чужародных рэчываў у арганізме, і, L-аскарбінавай к-ты (вітаміну C). У жывёльных клетках глюкоза ўтвараецца з пірувату шляхам абарачэння гліколізу (глюканеагенез), у фотасінтэзуючых клетках — з CO2 і H2O (у цыкле Крэбса). Прэпарат глюкозы выкарыстоўваецца ў харч. прам-сці, медыцыне, ветэрынарыі і інш.

т. 5, с. 310

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́МА-ВЫПРАМЯНЕ́ННЕ

(γ-выпрамяненне),

караткахвалевае эл.-магн. выпрамяненне з даўжынёй хвалі, меншай за 2·10​-10 м. Узнікае пры распадзе радыеактыўных ядраў (гл. Радыеактыўнасць), тармажэнні хуткіх зараджаных часціц у рэчыве (гл. Тармазное выпрамяненне), сінхратронным выпрамяненні, а таксама пры анігіляцыі электронна-пазітронных пар і ў інш. ядз. рэакцыях. З прычыны кароткай даўжыні хвалі ў гама-выпрамяненні выразныя карпускулярныя ўласцівасці (гл. Комптана эфект, Фотаэфект), хвалевыя (дыфракцыя, інтэрферэнцыя) выражаны слаба.

Асн. характарыстыка гама-выпрамянення — энергія асобнага γ-кванта Eγ =hν, дзе h — Планка пастаянная, ν — частата выпрамянення. Пры пераходзе ядра атама з узбуджанага стану з энергіяй Ei у больш нізкі энергет. стан Ek выпрамяняецца γ-квант з энергіяй Eγ = Ei = Ek Eγ = Ei — Ek. У выніку гэтага гама-выпрамянення ядраў мае лінейчасты спектр. Натуральныя радыеактыўныя крыніцы даюць гама-выпрамяненню з энергіяй да некалькіх мегаэлектронвольтаў (МэВ), у ядз. рэакцыях атрымліваюцца γ-кванты з энергіяй да дзесяткаў Мэв, а пры тармазным выпрамяненні — да соцень Мэв і больш. Гама-выпрамяненне — адно з найбольш пранікальных выпрамяненняў (пранікальнасць залежыць ад энергіі γ-квантаў і шчыльнасці рэчыва).

Гама-выпрамяненне выкарыстоўваецца для выяўлення дэфектаў у вырабах і дэталях (гл. Дэфектаскапія), экспрэснага колькаснага вызначэння волава ў рудах, стэрылізацыі харч. прадуктаў, гаматэрапіі злаякасных пухлін і інш.

А.І.Болсун.

т. 5, с. 8

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

со́нечны, ‑ая, ‑ае.

1. Які мае адносіны да сонца (у 1 знач.). Сонечны прамень. Сонечнае цяпло. Сонечная энергія. Сонечнае зацьменне. □ А сосны да неба ўзнімаюць галіны, нібыта вітаючы сонечны ўсход. А. Вольскі. // Які грунтуецца на скарыстанні энергіі Сонца. Сонечны рухавік. Сонечная ванна.

2. Такі, калі свеціць сонца, з сонцам. І калі запахне кропам, тады, здаецца, устае ўваччу сонечная-сонечная раніца, калі трапечуцца кропелькі расы на кветках. Лынькоў. У небе не было ні хмаркі, стаяў ясны сонечны дзень. Гурскі. Надвор’е было сонечнае. Кавалёў.

3. Які асвятляецца сонцам; асветлены сонцам. Сонечная паляна. Сонечны пакой. □ Раніцаю мокры вецер біўся з лесу ў сонечнае акно. Чорны. Над Свіслаччу, Дзе малады барок Вяршалін пікамі блакіт папоркаў, Цвіце нясмелым цветам чабарок, Паслаўшыся на сонечным пагорку. Калачынскі. Пасля цемры і вільгаці, што панавалі ў пячоры, на сонечным беразе было асабліва хораша. Бяганская.

4. перан. Радасны, светлы, шчаслівы. Жывём у сонечнай краіне І будзем жыць у добры час, Дзе праўда ясная не гіне, Дзе праўдзе служыць кожны з нас. Купала. // Які выяўляе радасны настрой. Добрай раніцы, чароўная чарцёжніца з сонечнай усмешкай! Васілёнак.

5. Падобны колерам на сонца; ярка-жоўты. Сонечны колер — след таго, што будынкі яшчэ свежыя, новыя. Скрыган.

•••

Сонечнае спляценне гл. спляценне.

Сонечная сістэма гл. сістэма.

Сонечны гадзіннік гл. гадзіннік.

Сонечны ўдар гл. удар.

Сонечныя плямы гл. пляма.

Тлумачальны слоўнік беларускай мовы (1977-84, правапіс да 2008 г.)

БО́РА ТЭО́РЫЯ,

першая тэорыя атама і яго спектраў. Прапанавана Н.Борам у 1913 як аб’яднанне ідэі М.Планка аб квантаванні энергіі і планетарнай мадэлі атама Э.Рэзерфарда. Грунтуецца на двух пастулатах. Атамы могуць доўга знаходзіцца, не выпраменьваючы святла, ва ўстойлівых (стацыянарных) станах, адпаведных пэўным дыскрэтным (перарыўным) значэнням энергіі E1, E2, E3... (1-ы пастулат Бора). Выпрамяненне ці паглынанне святла адбываецца пры скачкападобных пераходах з аднаго стану ў другі паводле формулы EiEk=, дзе hν — энергія святла частаты ν, што выпрамяняецца ці паглынаецца, h — Планка пастаянная (2-і пастулат Бора, ці ўмова частот).

Пастулаты Бора пацверджаны эксперыментальна і выконваюцца для ўсіх мікрасістэм (атамных ядраў, атамаў, малекул і інш.). Каб знайсці магчымыя значэнні энергіі і інш. характарыстыкі стацыянарных станаў атама, Бор разглядаў рух электронаў вакол ядра паводле законаў механікі Ньютана (класічнай механікі), пры дапаўняльных, т.зв. квантавых, умовах. Пры гэтым электрон у найпрасцейшым выпадку атама вадароду можа рухацца вакол ядра па кругавых ці эліптычных арбітах пэўных памераў, якія павялічваюцца з павелічэннем энергіі атама ў адпаведных стацыянарных станах. Канкрэтныя мадэльныя ўяўленні пра рух электрона ў атаме па строга вызначаных арбітах заменены ўяўленнямі квантавай механікі.

Літ.:

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗВЫШЦЯКУ́ЧАСЦЬ,

сукупнасць фіз. з’яў, звязаных з працяканнем без трэння вадкага гелію праз капіляры і вузкія шчыліны пры тэмпературах, блізкіх да абсалютнага нуля. Адкрыта эксперыментальна П.Л.Капіцам (1938), тэорыя створана Л.Д.Ландау (1941).

Пры т-ры 2,17 К (λ-пункт) у вадкім геліі (ізатоп ​1Не) адбываецца фазавы пераход 2-га роду: з нармальнага стану (гелій I) ён пераходзіць у звышцякучы стан (гелій II). З. суправаджаецца вельмі вял. цеплаправоднасцю і наяўнасцю рознасці тэмператур у двух сасудах са звышцякучым геліем, злучаных капілярам, што вядзе да значнай рознасці ціску ў іх (тэрмамех. эфект). У звышцякучым геліі разам са звычайным гукам (ваганні ціску) існуе другі гук (ваганні т-ры). Тэорыя З. заснавана на квантавых уяўленнях аб квазічасціцах — фанонах. У вадкім геліі змена энергіі суправаджаецца вылучэннем або паглынаннем фанона, які мае такую ж залежнасць паміж частатой і энергіяй, як і квант святла, але распаўсюджваецца са скорасцю гуку. Калі гелій II працякае праз капіляр са скорасцю, меншай за скорасць гуку, яго кінетычная энергія не пераходзіць у цеплавую, бо фаноны не могуць узнікнуць (трэнне адсутнічае). Калі скорасць руху перавышае скорасць гуку, узнікае трэнне і З. знікае.

Літ.:

Капица П.Л. Вязкость жидкого гелия при температурах ниже точки λ // Докл. АН СССР. 1938. Т. 18, № 1;

Ландау Л.Д. Собр. тр. Т. 1. М., 1969;

Халатников И.М. Теория сверхтекучести. М., 1971.

Л.І.Камароў.

т. 7, с. 42

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)