ІЗАПРЭ́НАВЫЯ КАЎЧУКІ́,

сінтэтычныя каўчукі, прадукты полімерызацыі ізапрэну. Найб. важныя стэрэарэгулярныя І.к., макрамалекулы якіх маюць 93—98% звёнаў ізапрэну ў 1,4-цыс канфігурацыі. Па мікраструктуры І.к. — аналагі каўчуку натуральнага.

Пры пакаёвай т-ры аморфныя рэчывы, шчыльн. 910—920 кг/м³. Крышталізуюцца пры ахаладжэнні ніжэй за 0 °C ці пры расцяжэнні. Раствараюцца ў вуглевадародах і іх галагенавытворных, серавугляродзе. Атрымліваюць полімерызацыяй ізапрэну ў растворы на каталізатарах Цыглера—Наты (комплексныя злучэнні тытану і алюміній-арган. злучэнняў) ці алюмініевых каталізатарах (напр.. метал. літый, літыйалкілы). Не патрабуюць пластыфікацыі, вулканізуюцца серай. Па асн. уласцівасцях вулканізаты падобны на гуму з натуральнага каўчуку. Выкарыстоўваюць у вытв-сці шын, канвеерных стужак, рукавоў, гумавага абутку і інш.

М.Р.Пракапчук.

т. 7, с. 177

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛЕПІДАЛІ́Т [ад грэч. lepis (lepidos) луска + lithos камень],

мінерал групы слюдаў, падкласа слаістых сілікатаў; фторгідраксільны алюмасілікат калію і літыю, K(Li, Al)2 (Si, Al)4O10(F, OH)2. Мае ў сабе 3,1—6% аксіду літыю LiO2, прымесі жалеза, марганцу, магнію, рубідыю, цэзію. Крышталізуецца ў манаклінальнай, радзей у трыкліннай або рамбічнай сінганіі. Крышталі пласціністыя, лускаватыя, шкарлупістыя; шчыльныя дробназярністыя агрэгаты. Колер светлы, ружова-фіялетавы, розных адценняў. Празрысты. Бляск перламутравы. Цв. 2,5—3,5. Шчыльн. 2,8—2,9 г/см³. Трапляецца ў рэдкаметальных пегматытах і літый-фторыстых гранітах, радзей у грэйзенах. Руда для вытв-сці літыю. Выкарыстоўваецца ў аптычнай, шкляной і керамічнай прам-сці. Радовішчы ў Казахстане, Расіі, Чэхіі, Швецыі, ЗША і інш.

Лепідаліт.

т. 9, с. 209

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГІДРАТЭРМА́ЛЬНЫЯ РАДО́ВІШЧЫ,

радовішчы карысных выкапняў, якія ўтвараюцца пры асаджэнні рэчываў, раствораных у гарачых (ад 600—700°C да 50—25°C) мінералізаваных водах, што цыркулююць у нетрах Зямлі. Крыніцы такіх раствораў: магматычная, метамарфічная, поравая, або метэорная вада, што вызваляецца пад уздзеяннем розных геахім. і геал. працэсаў; растворанае мінер. рэчыва, выдзеленае астываючай магмай або мабілізаванае з парод, праз якія фільтруюцца падземныя воды.

Гідратэрмальныя радовішчы фарміруюцца ў шырокім інтэрвале — ад паверхні Зямлі да глыбінь больш за 10 км. Паводле саставу пераважнай часткі каштоўных кампанентаў вылучаюць 5 тыпаў руд гідратэрмальных радовішчаў: сульфідныя (медзь, цынк, свінец, малібдэн, вісмут, нікель, кобальт і інш.), вокісныя (жалеза, вальфрам, ніобій, волава, уран і інш.), карбанатныя (марганец, жалеза і інш.), самародныя (золата, серабро), сілікатныя (азбест, слюды), рэдкіх металаў (берылій, літый і інш.). Па глыбіні і т-ры ўтварэння гідратэрмальныя радовішчы падзяляюць на гіпатэрмальныя, мезатэрмальныя і эпітэрмальныя радовішчы.

У.Я.Бардон.

т. 5, с. 233

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ІАНІЗА́ЦЫІ ПАТЭНЦЫЯ́Л, патэнцыял іанізацыі,

фізічная велічыня, роўная мінім. паскаральнай рознасці патэнцыялаў, якую неабходна прыкласці, каб надаць электрону кінетычную энергію, дастатковую для іанізацыі часціцы (малекулы, атама, іона). Вызначае энергію іанізацыі E — мінім. энергію, неабходную для выдалення электрона з часціцы на бясконцасць, E = eV, дзе V — І.п., е — элементарны эл. зарад. І.п. вымяраюць у вольтах, колькасна ён роўны энергіі іанізацыі ў электрон-вольтах. Разам з роднасцю да электрона вызначае электраадмоўнасць атамаў і малекул.

Адрозніваюць першы, другі і г.д. І.п., якія адпавядаюць выдаленню з часціцы першага, другога і г.д. электронаў. Першыя І.п. вядомы для атамаў усіх хім. элементаў (мінім. І.п. маюць шчолачныя металы: цэзій 2,893 В, літый 5,39 В; макс. — інертныя газы: гелій 24,58 В, радон 10,745 В) і некалькіх тысяч малекул (для якіх І.п. ад 5 да 20 В). Значэнні І.п. выкарыстоўваюць пры разліках тэрмахім. працэсаў у іанізаваных газах і плазме (газаразрадныя прылады, працэсы ў верхніх слаях атмасферы і інш.).

А.П.Чарнякова.

т. 7, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЛІ́ТЫЮ ЗЛУЧЭННІ,

хімічныя злучэнні, у састаў якіх уваходзіць літый. Найб. пашыраныя — солі мінер. кіслот, бінарныя неарган. злучэнні і літыйарганічныя злучэнні.

Літыю аксід Li2O — асноўны тугаплаўкі аксід (tпл 1453 °C). Утвараецца пры награванні металу ў паветры. Выкарыстоўваюць як кампанент спец. шкла (напр., з невялікім тэмпературным каэф. лінейнага расшырэння), палівы і эмалей (павышае іх хім. і тэрмічную ўстойлівасць). Літыю алюмагідрыд LiAlH4крышт. парашок, які бурна ўзаемадзейнічае з вадой, спіртамі і к-тамі з вылучэннем вадароду. Выкарыстоўваюць як селектыўны аднаўляльнік у арган. сінтэзе, асушальнік растваральнікаў, для атрымання гідрыдаў. Літыю гідраксід LiOH — моцная аснова (шчолач). Вельмі гіграскапічнае рэчыва. Выкарыстоўваюць як кампанент электралітаў у шчолачных акумулятарах, паглынальнік вуглякіслага газу ў процівагазах, падводных лодках, самалётах. LiOH і яго водныя растворы выклікаюць апёкі скуры і слізістых абалонак. Літыю гідрыд LiH раскладаецца вадой з утварэннем LiOH і вадароду. У прам-сці атрымліваюць узаемадзеяннем расплаву Li з вадародам пры 630—730 °C. Выкарыстоўваюць як крыніцу вадароду для напаўнення аэрастатаў, аднаўляльнік у арган. сінтэзе, для атрымання боравадародаў, літыйарган. злучэнняў, трытыю. Солі літыю (фтарыд LiF, карбанат Li2CO3, сульфат Li2SO4 і інш.) выкарыстоўваюць як кампаненты спец. шкла, тэрмаўстойлівай керамікі, палівы, эмалей, люмінафораў, лек. сродкаў.

т. 9, с. 319

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АХО́ВА АД РАДЫЕАКТЫ́ЎНЫХ ВЫПРАМЯНЕ́ННЯЎ,

сукупнасць фіз. і хім. сродкаў аховы арганізма, накіраваных на стварэнне бяспечных умоў працы персаналу і пражывання насельніцтва пры магчымым уздзеянні радыеактыўнага выпрамянення. Уключае: ахову ад вонкавага выпрамянення «закрытых» крыніц (радыеактыўныя прэпараты, ядз. рэактары, рэнтгенаўскія і паскаральныя ўстаноўкі і інш.); ахову біясферы ад забруджвання радыеактыўнымі рэчывамі «адкрытых» радыеактыўных крыніц (адходы ядз. прам-сці, прадукты выпрабаванняў ядз. зброі і выкідаў прадпрыемствамі атамнай прам-сці, работа з «адкрытымі» радыеактыўнымі прэпаратамі і інш.).

Ахова ад вонкавага выпрамянення мае на мэце аслабленне выпрамянення пры яго ўзаемадзеянні з рэчывам асяроддзя: для паглынання альфа- і бэта-часціц дастаткова аркуша паперы, гумавых пальчатак, адзення ці слоя паветра таўшч. 8—9 см; для паглынання электронаў — некалькіх мм алюмінію, плексігласу або шкла; для паглынання гама-квантаў — матэрыялы, якія ўключаюць элементы з вял. атамнымі нумарамі (вальфрам, свінец, жалеза і інш.), для нейтронаў — водазмяшчальныя рэчывы (парафін, гідрыды металаў, бетон і інш.). Каб знізіць пранікальную здольнасць другаснага выпрамянення (напр., жорсткага зыходнага гама-выпрамянення, тармазнога выпрамянення пры паглынанні бэта-часціц), дадаткова ўжываюць літый або бор. Ахова ад вонкавага апрамянення праводзіцца з улікам спектральнага складу іанізавальнага выпрамянення, магутнасці яго крыніц, адлегласці, на якой знаходзіцца абслуговы персанал, і працягласці знаходжання ў сферы ўздзеяння выпрамянення. Ахоўныя прыстасаванні падзяляюцца на суцэльныя, частковыя, ценявыя і паасобныя (ахоўныя сцены, перакрыцці падлогі і столі, дзверы, назіральныя вокны, кантэйнеры і інш.). Ахова біясферы прадугледжвае спец. захады па зніжэнні канцэнтрацыі радыеактыўных рэчываў у вадзе і паветры да гранічна дапушчальных канцэнтрацый (пастаянна ўдакладняюцца і пераглядаюцца; гл. Дозы выпрамянення). Уздзеянне радыеактыўных рэчываў, што трапляюць у арганізм чалавека і жывёлы, зніжаюць пры дапамозе радыеахоўных рэчываў, якія ўводзяць у арганізм перад ці на працягу ўздзеяння іанізавальнай радыяцыі. Іх умоўна падзяляюць на сродкі агульнабіял. дзеяння, якія павышаюць натуральную радыерэзістэнтнасць — агульную супраціўляльнасць арганізма (вадкія экстракты і настойкі элеўтэракоку калючага, жэньшэню, лімонніку кітайскага, лагахілусу, вітаміны, гармоны, каферменты, вітамінна-амінакіслотныя комплексы, некат. мікраэлементы і антыбіётыкі, біястымулятары) і спецыфічныя радыеахоўныя рэчывы — радыепратэктары, якія ствараюць умовы штучнай радыерэзістэнтнасці. Да іх належаць пераважна рэчывы сінт. паходжання, увядзенне якіх за некалькі мінут ці гадзін перад апрамяненнем у арганізм чалавека і жывёлы паніжае ўздзеянне іанізавальнага выпрамянення. Найбольш эфектыўныя індалілалкіламіны і серазмяшчальныя злучэнні (напр., амінаалкілтыяфасфаты, пептыды і адпаведныя ім дысульфіды, серазмяшчальныя амінакіслоты, дытыякарбаматы, вытворныя тыязалідзіну). Яны выкарыстоўваюцца ў асноўным для індывід. засцярогі арганізма ад вонкавага апрамянення ў надзвычайных абставінах (аварыйныя, ваен. ўмовы) і для пераважнай аховы нармальных тканак пры прамянёвай тэрапіі злаякасных пухлін. Найбольш эфектыўныя сумесі з радыепратэктараў, якія валодаюць рознымі механізмамі ахоўнага дзеяння.

Ва ўстановах, дзе праводзяцца работы з крыніцамі іанізавальных выпрамяненняў, ажыццяўляецца дазіметрычны і радыеметрычны кантроль. Пры рабоце з «закрытымі» крыніцамі робяць замеры індывід. дозаў для ўсіх відаў апрамянення, перыядычны кантроль магутнасцяў дозаў на рабочых месцах і ў сумежных памяшканнях. Пры правядзенні работ з вял. крыніцамі ўстанаўліваюць прылады з аўтам. сігналізацыяй. Пры наяўнасці «адкрытых» крыніц дадаткова кантралююць колькасць радыеактыўных рэчываў у паветры рабочых памяшканняў, забруджанне рабочых паверхняў, абсталявання, рук і адзення працуючых, радыеактыўнасць сцёкавых водаў і паветра, што выдаляецца ў атмасферу. У выпадках буйнамаштабных аварый на АЭС (накшталт Чарнобыльскай) прадугледжваюцца паэтапныя мерапрыемствы: першачарговыя — укрыццё, эвакуацыя і ўвядзенне стабільнага ёду насельніцтву ў першыя дні пасля аварыі; перасяленне, абмежаванні на ўжыванне харч. прадуктаў з забруджаных тэрыторый, дэзактывацыйныя работы і рэкультывацыя с.-г. угоддзяў і інш.

Літ.:

Владимиров В.Г., Красильников И.И., Арапов О.В. Радиопротекторы: структура и функция. Киев, 1989;

Beir V. Health effects of exposure to low levels of ionizing radiation. Washington, 1990.

т. 2, с. 147

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)