ВЕ́КТАР-ФУ́НКЦЫЯ,
вектарная функцыя, функцыя, значэнні якой з’яўляюцца вектарамі. У трохмернай прасторы раўназначная заданню 3 скалярных функцый, якія адпавядаюць каардынатам вектара. Вектарамі-функцыямі з’яўляюцца, напр., радыус-вектар рухомага матэрыяльнага пункта, напружанасць эл. поля, магнітная індукцыя. Калі ўсе вектары маюць агульны пачатак, то канцы вектараў утвараюць гадограф вектар-функцыі.
т. 4, с. 64
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВУГЛАВА́Я СКО́РАСЦЬ,
вектарная велічыня , якая характарызуе скорасць вярчэння цвёрдага цела. Модуль вуглавой скорасці
, дзе — прырашчэнне вугла павароту за прамежак часу . Вектар накіраваны ўздоўж восі вярчэння ў той бок, адкуль паварот цела бачны супраць ходу гадзіннікавай стрэлкі (правіла правага вінта). Адзінка вуглавой скорасці ў СІ — радыян за секунду (рад/с).
т. 4, с. 285
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВУГЛАВО́Е ПАСКАРЭ́ННЕ,
вектарная велічыня , якая характарызуе хуткасць змены вуглавой скорасці. Пры вярчэнні цвёрдага цела вакол нерухомай восі модуль вуглавога паскарэння
, дзе — змена вуглавой скорасці за прамежак часу , — вугал павароту. Пры гэтым вектар накіраваны ўздоўж восі вярчэння (у бок вектара вуглавой скорасці пры паскораным вярчэнні і супраць — пры запаволеным). Адзінка вуглавога паскарэння ў СІ — радыян на секунду ў квадраце (рад/с2).
т. 4, с. 285
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГІ́ЛЬБЕРТАВА ПРАСТО́РА,
абагульненне эўклідавай прасторы на бясконцамерны выпадак. Уведзена ў канцы 19 — пач. 20 ст. ў працах Д.Гільберта як вынік абагульнення фактаў і метадаў раскладання функцый у артаганальныя шэрагі, а таксама даследаванняў інтэгральных ураўненняў. Выкарыстоўваецца ў розных раздзелах матэматыкі, тэорыі імавернасцей, тэарэт. фізікі.
Першасна гільбертава прастора — прастора бясконцых паслядоўнасцей, напр., x = (x1, x2,..., xn, ...) са збежным шэрагам квадратаў x12 + x22 + ... + xn2 + ... . Суму двух элементаў (вектараў) паслядоўнасцей, іх скалярны здабытак і інш. вылічваюць пакаардынатна па звычайных правілах (гл. Вектарная прастора, Вектарнае злічэнне). У больш шырокім сэнсе гільбертава прастора — лінейная прастора, для якой вызначаны скалярны здабытак. У залежнасці ад вызначэння множання элементаў на сапраўдны ці камплексны лік адрозніваюць сапраўдныя і камплексныя гільбертавы прасторы.
т. 5, с. 244
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЕ́КТАРНАЕ ЗЛІЧЭ́ННЕ,
раздзел матэматыкі, у якім вывучаюцца дзеянні над вектарамі і іх уласцівасці. Яго развіццё ў 19 ст. выклікана патрэбамі механікі і фізікі. Пачалося з даследаванняў У.Гамільтана і Г.Грасмана па гіперкамплексных ліках. Падзяляецца на вектарную алгебру і вектарны аналіз.
Вектарная алгебра разглядае лінейныя дзеянні над вектарамі (складанне, адніманне вектараў, множанне вектараў на лік), а таксама скалярны здабытак, вектарны здабытак і змешаны здабытак вектараў. Сума
вектараў і — вектар, праведзены з пачатку да канца , калі канец і пачатак супадаюць. Складанне вектараў мае ўласцівасці:
;
;
;
; дзе — нулявы вектар, — вектар, процілеглы вектару (гл. Асацыятыўнасць, Камутатыўнасць). Рознасць вектараў і — вектар такі, што
; рознасць ёсць вектар, які злучае канец вектара з канцом вектара , калі яны адкладзены з аднаго пункта. Здабыткам вектара на лік α наз. вектар α , модуль якога роўны
і які накіраваны аднолькава з вектарам , калі α > 0, і процілеглы пры α < 0. Калі α = 0 ці , то α = . Уласцівасці множання вектара на лік:
;
;
;
. Пры каардынатным заданні вектараў розным дзеяннем над вектарамі адпавядаюць дзеянні над іх каардынатамі. У вектарным аналізе вывучаюцца вектарныя і скалярныя функцыі аднаго ці некалькіх аргументаў і дыферэнцыяльныя аперацыі над гэтымі функцыямі (гл., напр., Градыент, Дывергенцыя).
А.А.Гусак.
т. 4, с. 63
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)