МАДУЛЯ́ЦЫЯ ВАГА́ННЯЎ змена амплітуды, частаты ці інш. параметраў ваганняў па зададзеным законе, павольная ў параўнанні з перыядам гэтых ваганняў. У тэхн. прыладах і сістэмах мадуляцыя эл.-магн. ваганняў радыё- і аптычнага дыяпазонаў, а таксама акустычных хваль выкарыстоўваецца для трансфармацыі частотнага спектра зыходнага вагання з мэтай павышэння эфектыўнасці перадачы інфармацыі, для частотнага раздзялення розных сістэм і прылад, для забеспячэння іх адначасовай работы на розных нясучых частотах, змены часавых параметраў сігналаў і інш.
Найб. пашыраны амплітудная мадуляцыя, фазавая мадуляцыя, частотная мадуляцыя, розныя віды імпульснай мадуляцыі, а таксама іх камбінацыі, напр., амплітудна-фазавая. У залежнасці ад віду мадуляцыі амплітуда, частата ці фаза высокачастотных ваганняў («носьбіт» інфармацыі), а таксама палярызацыя (у выпадку святла; гл.Мадуляцыя святла) змяняецца (мадулюецца) у адпаведнасці з нізкачастотным сігналам, што перадаецца. Выкарыстанне канкрэтнага віду М.в. залежыць ад параметраў ліній сувязі, патрабаванняў да якасці перададзенай інфармацыі, характарыстык прыёмнай апаратуры і інш. Працэс, адваротны М.в., наз. дэмадуляцыяй і ажыццяўляецца ў прыёмнай апаратуры (гл.Дэтэктыраванне).
Амплітудная (б) і частотная (в) мадуляцыя ваганняў пры пілападобнай мадулюючай функцыі (а).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫПРАМЯНЕ́ННЕэлектрамагнітнае, свабоднае электрамагнітнае поле, якое існуе незалежна ад крыніц, што яго ствараюць; працэс утварэння свабоднага электрамагнітнага поля. Выпрамяненню ўласцівы т.зв.карпускулярна-хвалевы дуалізм. Асн. хвалевыя характарыстыкі выпрамянення — частата ν (або даўжыня хвалі ), дзе c — скорасць святла ў вакууме), а таксама хвалевы вектар
, дзе — адзінкавы вектар напрамку распаўсюджвання хвалі. Хвалевыя ўласцівасці выпрамянення праяўляюцца ў наяўнасці інтэрферэнцыі і дыфракцыі (гл.Дыфракцыя хваль, Інтэрферэнцыя хваль). Карпускулярныя ўласцівасці характарызуюцца тым, што кожнай асобнай хвалі з частатой ν і хвалевым вектарам адпавядае часціца (квант або фатон) з энергіяй і імпульсам
, дзе h — Планка пастаянная. Карпускулярныя ўласцівасці праяўляюцца ў квантавых з’явах, напр., фотаэфект, Комптана эфект і інш.
Праяўленне хвалевых ці карпускулярных (квантавых) уласцівасцей выпрамянення залежыць ад яго частаты, па значэннях якой выпрамяненне ўмоўна падзяляецца на дыяпазоны (гл.табл.). <TABLE> Для хваль вял. даўжыні (напр., ЗВЧ, радыёхвалі) энергія квантаў вельмі малая, таму карпускулярныя ўласцівасці выпрамянення практычна не праяўляюцца. З павелічэннем частаты расце энергія квантаў і з інфрачырвонага дыяпазону ўжо пачынаюць пераважаць карпускулярныя ўласцівасці.
Уласцівасці выпрамянення для малых частот апісваюцца класічнай электрадынамікай, для вялікіх — квантавай. Паводле класічных Максвела ўраўненняў выпрамяненне ў кожным пункце прасторы і ў кожны момант часу характарызуецца напружанасцямі электрычнага і магнітнага палёў і пераносіць энергію, аб’ёмная шчыльнасць якой
. У квантавай тэорыі ўраўненні Максвела поўнасцю захоўваюцца, аднак велічыні і маюць іншы сэнс. У гэтым выпадку сувязь паміж хвалевымі і карпускулярнымі ўласцівасцямі выпрамянення мае статыстычны характар: шчыльнасць энергіі эл.-магн. хвалі вызначаецца лікам квантаў у адзінцы аб’ёму
, для асобнага кванта імавернасць яго знаходжання ў пэўным аб’ёме прапарцыянальная шчыльнасці энергіі.
Выпрамяненне ўзнікае ў рэчыве пры нераўнамерным руху эл. зарадаў ці змене магн. момантаў, у выніку чаго рэчыва траціць энергію і адбываюцца працэсы выпрамянення. Да іх адносяцца выпрамяненне бачнага, ультрафіялетавага і інфрачырвонага святла атамамі і малекуламі, γ-выпрамяненне атамных ядраў, выпрамяненне радыёхваль антэнамі. Адваротныя працэсы выпрамянення — працэсы паглынання. Пры іх за кошт энергіі выпрамянення павялічваецца энергія рэчыва. Паводле законаў класічнай электрадынамікі сістэма рухомых зараджаных часціц неперарыўна траціць энергію ў выглядзе выпрамянення — адбываецца неперарыўны працэс утварэння эл.-магн. хваль. Аднак у квантавых сістэмах працэсы выпрамянення і паглынання дыскрэтныя і адбываюцца ў адпаведнасці з законамі квантавых пераходаў (гл.Вымушанае выпрамяненне, Спантаннае выпрамяненне).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МАГНІТАТЭЛУРЫ́ЧНЫЯ МЕ́ТАДЫ РАЗВЕ́ДКІ,
адзін з кірункаў геафізічнай разведкі, заснаваны на вывучэнні пераменных у часе і па частаце варыяцый прыродных тэлурычных эл. токаў у прыпаверхневай ч. Зямлі. Тэлурычныя токі ствараюцца варыяцыямі магнітнага паля Зямлі і эл. канвекцыйнымі працэсамі ў зямной кары і атмасферы, характар іх варыяцый залежыць ад геал. будовы. Адрозніваюць метады: тэлурычных токаў (ТТ), магнітатэлурычнага зандзіравання (МТЗ) і магнітатэлурычнага прафілявання (МТП).
У метадзе ТТ сінхронна вымяраецца рознасць патэнцыялаў варыяцый тэлурычнага поля на базавым і радавых пунктах. Атрымліваюць тэлураграмы, па якіх вымяраюць параметры поля ТТ і складаюць карты рэльефу паверхні высакаомнага гарызонта ў асадкавым чахле або крышт. фундамента. У метадзе МТЗ дадаткова да эл. характарыстык поля ТТ вымяраюць магнітную складаючую і вылічваюць адносіны эл. складаючай да магнітнай для розных частот, будуюць крывую ўяўнага ўдзельнага супраціўлення, якую параўноўваюць з тэарэтычнымі. У адрозненне ад МТЗ у метадзе МТП адносіны эл. складаючай да магнітнай вылічваюць для фіксаванай частаты.
На Беларусі ў выніку даследаванняў ВА «Белгеалогія» і Ін-та геал. навук Нац.АН Беларусі па метадах ТТ і МТЗ складзены карты сярэдняй напружанасці поля ТТ і пашырэння электраправодных слаёў, карты рэльефу фундамента, паверхні саляносных адкладаў і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ВЫМЯРА́ЛЬНЫ ПЕРАЎТВАРА́ЛЬНІК,
прыстасаванне, якое пераўтварае фіз. велічыню, што вымяраецца або рэгулюецца, у сігнал (звычайна электрычны) для далейшай перадачы, апрацоўкі ці рэгістрацыі. Адна з асн. частак сродкаў вымяральнай тэхнікі, сістэм аўтаматыкі і тэлемеханікі. Тэрмін «вымяральны пераўтваральнік» уведзены стандартам замест тэрміна «датчык».
Параметры, якія ўспрымаюцца вымяральным пераўтваральнікам, бываюць механічныя (намаганне, перамяшчэнне, скорасць, вібрацыя), гідраўлічныя і пнеўматычныя (ціск, расход), аптычныя (сіла святла), цеплавыя (т-ра), электрычныя (напружанне і ток), радыеактыўныя. Выходныя сігналы падзяляюцца на электрычныя і пнеўматычныя (часам гідраўлічныя), амплітудныя, часаімпульсныя, частотныя і фазавыя, аналагавыя (неперарыўныя) і лічбавыя (дыскрэтныя). Вымяральны пераўтваральнік складаецца з аднаго (напр., тэрмапара, тэнзометр) або з некалькіх элементарных пераўтваральнікаў, найважнейшы з якіх — адчувальны элемент. Пераўтваральнікі злучаюцца па каскаднай, дыферэнцыяльнай і кампенсацыйнай схемах. Найб. Пашыраны маштабныя і функцыянальныя вымяральныя пераўтваральнікі. Маштабныя (напр., дзялільнікічастаты і напружання, трансфарматары вымяральныя) мяняюць маштаб велічыні, якая вымяраецца, без змены яе фіз. прыроды. Гэтыя вымяральныя пераўтваральнікі пашыраюць межы вымярэнняў сродкамі вымяральнай тэхнікі. Функцыянальныя вымяральныя пераўтваральнікі (напр., тэрмарэзістары, фотаэлементы) пераўтвараюць велічыню той ці іншай фіз. прыроды ў функцыянальна звязаны з ёй сігнал (звычайна электрычны). Такімі вымяральнымі пераўтваральнікамі можна вымяраць разнастайныя неэл. велічыні. Асобны клас складаюць аперацыйныя вымяральныя пераўтваральнікі, якія выконваюць над велічынямі пэўныя матэм. аперацыі (інтэграванне, дыферэнцыраванне і інш.). Асн. характарыстыкі вымяральных пераўтваральнікаў: від функцыянальнай залежнасці паміж уваходнай і выходнай велічынямі, адчувальнасць і парог адчувальнасці, хібнасць.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГАДЗІ́ННІК АСТРАНАМІ́ЧНЫ,
гадзіннік для вызначэння, адліку і захавання дакладнага часу, які неабходны пры астр. даследаваннях, у практычнай астраноміі, астраметрыі. У старажытнасці для астр. даследаванняў карысталіся пясочнымі, вадзянымі і сонечнымі гадзіннікамі. Іх хібнасць складала секунды і болей. Да сучасных гадзіннікаў астранамічных адносяць спец. маятнікавыя (з сутачным ходам гадзіннікаў да 5·10−4с), кварцавыя гадзіннікі (з сутачным ходам 5·10−7с), квантавыя гадзіннікі (атамныя гадзіннікі з сутачным ходам не больш за 10−8с).
Маятнікавыя гадзіннікі канструкцый англ.інж. У.Г.Шорта і сав. канструктара Ф.М.Федчанкі складаюцца з 2 маятнікаў — свабоднага і другаснага. Іх дакладнасць заснавана на ўласцівасці маятніка захоўваць пастаянным перыяд сваіх ваганняў, які залежыць ад даўжыні маятніка. Для выключэння ўплыву змены знешніх умоў (т-ры, атм. ціску) на перыяд ваганняў стрыжань робяць з матэрыялу з малым каэф. лінейнага расшырэння, а сам свабодны маятнік змяшчаюць у герметычным аб’ёме ў ізатэрмічным пакоі. Маятнік злучаны з другасным гадзіннікавым механізмам эл. ланцугом. Маятнікавыя гадзіннікі патрабуюць папраўкі пры дапамозе астр. назіранняў або радыёсігналаў дакладнага часу, што выконваюцца службай часу. Кварцавыя гадзіннікі заснаваны на п’езаэлектрычным эфекце; малекулярныя і атамныя — на выкарыстанні ўласнай частаты ваганняў малекул і атамаў некаторых рэчываў (аміяку, цэзію, вадароду), што дало магчымасць стварыць новую, незалежную ад астр. назіранняў сістэму лічэння часу.
Літ.:
Бакулин П.И., Блинов Н.С. Служба точного времени. 2 изд. М., 1977.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БО́РА ТЭО́РЫЯ,
першая тэорыя атама і яго спектраў. Прапанавана Н.Борам у 1913 як аб’яднанне ідэі М.Планка аб квантаванні энергіі і планетарнай мадэлі атама Э.Рэзерфарда. Грунтуецца на двух пастулатах. Атамы могуць доўга знаходзіцца, не выпраменьваючы святла, ва ўстойлівых (стацыянарных) станах, адпаведных пэўным дыскрэтным (перарыўным) значэнням энергіі E1, E2, E3... (1-ы пастулат Бора). Выпрамяненне ці паглынанне святла адбываецца пры скачкападобных пераходах з аднаго стану ў другі паводле формулы , дзе hν — энергія святла частаты ν, што выпрамяняецца ці паглынаецца, h — Планка пастаянная (2-і пастулат Бора, ці ўмова частот).
Пастулаты Бора пацверджаны эксперыментальна і выконваюцца для ўсіх мікрасістэм (атамных ядраў, атамаў, малекул і інш.). Каб знайсці магчымыя значэнні энергіі і інш. характарыстыкі стацыянарных станаў атама, Бор разглядаў рух электронаў вакол ядра паводле законаў механікі Ньютана (класічнай механікі), пры дапаўняльных, т.зв. квантавых, умовах. Пры гэтым электрон у найпрасцейшым выпадку атама вадароду можа рухацца вакол ядра па кругавых ці эліптычных арбітах пэўных памераў, якія павялічваюцца з павелічэннем энергіі атама ў адпаведных стацыянарных станах. Канкрэтныя мадэльныя ўяўленні пра рух электрона ў атаме па строга вызначаных арбітах заменены ўяўленнямі квантавай механікі.
Літ.:
Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЕТРАЛАГІ́ЧНАЯ СЛУ́ЖБА,
сетка арг-цый, на якія ўскладзена адказнасць за метралагічнае забеспячэнне, г.зн. за ўстанаўленне і выкарыстанне навук.-арганізац. асноў, тэхн. сродкаў, правіл і норм, неабходных для дасягнення адзінства і патрэбнай дакладнасці вымярэнняў. М.с. Беларусі ўключае дзярж. М.с. (у яе ўваходзяць Дзярж.к-т па стандартызацыі, метралогіі і сертыфікацыі — Дзяржстандарт, н.-д. ўстановы, рэгіянальныя органы Дзяржстандарту) і М.с. суб’ектаў гаспадарання (мін-ваў, ведамстваў, прадпрыемстваў, арг-цый, устаноў). Нарматыўнай асновай М.с. з’яўляюцца міжнар. і міждзярж. стандарты, стандарты Рэспублікі Беларусь, тэхн. ўмовы, стандарты прадпрыемстваў, метадычныя ўказанні, інструкцыі; тэхн. базай — эталоны, узорныя сродкі вымярэнняў, рабочыя сродкі вымярэнняў і інш.
Для забеспячэння адзінства вымярэнняў М.с. распрацоўвае эталоны, метады і сродкі перадачы адзінак фіз. велічынь ад эталонаў да рабочых сродкаў вымярэнняў, ажыццяўляе вымярэнні на вытв-сці і ў навук. даследаваннях, распрацоўвае дзярж. стандарты, праводзіць акрэдытацыю выпрабавальных лабараторый і цэнтраў. Прававой асновай М.с. Беларусі з’яўляюцца законы аб забеспячэнні адзінства вымярэнняў, аб сертыфікацыі прадукцыі, работ і паслуг, аб ахове правоў спажыўца і інш. Уведзены ў дзеянне нац. эталоны адзінак часу, частаты, шкалы часу, адзінкі тэмпературы, напружання пераменнага току. Створана лабараторыя дзярж. дазіметрычных эталонаў, зацверджаны і ўнесены ў Дзярж. рэестр сродкаў вымярэнняў Рэспублікі Беларусь дзярж. стандартныя ўзоры саставу раствораў іонаў металаў, арган. рэчываў і пестыцыдаў, водных раствораў неметалаў.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЕТАЛАО́ПТЫКА,
раздзел фізікі, у якім вывучаецца ўзаемадзеянне металаў з эл.-магн. хвалямі аптычнага дыяпазону. Аптычныя характарыстыкі металаў выкарыстоўваюцца ў вытв-сці метал. люстэркаў, святлодзялільных паверхняў, дыфракцыйных рашотак і інш.; метадамі М. выяўляюцца вокісныя плёнкі на паверхні металаў, вызначаюцца іх аптычныя ўласцівасці і інш.
Узаемадзеянне эл.-магн. хвалі з металам звязана з наяўнасцю ў ім электронаў праводнасці і валентных электронаў. Аптычныя ўласцівасці металаў апісваюцца камплексным паказчыкам пераламлення, які ўстанаўлівае сувязь паміж падаючай і пераломленай хвалямі праз каэфіцыент паглынання і характарызуе затуханне хвалі ўнутры металу. Значэнні каэфіцыентаў адбіцця і паглынання залежаць ад электроннай будовы металу і даўжыні падаючай хвалі. Вял. каэфіцыент адбіцця (напр., у серабра да 99%) у шырокім дыяпазоне частот абумоўлены вял. канцэнтрацыяй электронаў праводнасці. Токі праводнасці экраніруюць знешняе эл.-магн. поле і вядуць да затухання хвалі ўнутры металу (хваля затухае ў слоі металу таўшчынёй да 1 мкм). Электроны праводнасці могуць паглынаць надзвычай малыя кванты энергіі, што істотна ў радыёчастотнай і інфрачырвонай абласцях спектра. Валентныя электроны ўдзельнічаюць ва ўнутр. фотаэфекце, што вядзе да ўтварэння палос паглынання, якія назіраюцца ў бачнай і бліжэйшай ультрафіялетавай абласцях спектра. З павелічэннем частаты каэфіцыент паглынання металаў змяншаецца і, напр., у рэнтгенаўскай вобласці, дзе аптычныя ўласцівасці металаў вызначаюцца электронамі ўнутр. абалонак атамаў, металы амаль не адрозніваюцца па аптычных уласцівасцях ад дыэлектрыкаў.
Літ.:
Соколов А.В. Оптические свойства металлов. М., 1961;
Металлооптика и сверхпроводимость. М., 1988;
Степанов Б.И. Введение в современную оптику. Мн., 1989.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛА́ЗЕРНАЕ ЗАНДЗІ́РАВАННЕатмасферы і гідрасферы,
светлавая лакацыя структуры і саставу асяроддзя на аснове імпульсных лазераў. Характарызуецца высокай прасторавай і часавай раздзяляльнай здольнасцю, экспрэснасцю, бескантактнасцю, магчымасцю атрымання звестак з вял. прасторы.
Заснавана на рассеянні імпульснага лазернага выпрамянення ў паветры ці вадзе і залежнасці ўласцівасцей рассеянага святла ад саставу і інш. характарыстык рассейвальнага асяроддзя (гл.Рассеянне святла). Пры Л.з. вымяраюць інтэнсіўнасць і спектральны састаў рассеянага святла, яго дэпалярызацыю і доплераўскі зрух частаты (гл.Доплера эфект), спазняльнасць адносна моманту, у які лазерны імпульс накіроўваецца ў асяроддзе. Гэта дае магчымасць вызначыць у атмасферы канцэнтрацыю розных газаў і аэразолей, сярэдні памер часцінак, іх дысперснасць і форму, іншы раз і хім. састаў, т-ру паветра, скорасць ветру; для вады — канцэнтрацыю арган. і неарган. завісі, стан воднай паверхні, яе т-ру і інш.; па часе запазнення вызначаюць адлегласць да месца, з якога прыйшло рассеянае святло. Прылады для Л.з. наз.лідарамі. Л.з. дае магчымасць кантраляваць забруджванне атмасферы, «азонныя дзіры» і інш.
На Беларусі работы па Л.з. вядуцца з сярэдзіны 1960-х г. у Ін-це фізікі Нац.АН (у 1966 тут праведзена першае ў СССР Л.з. атмасферы і вады).
Літ.:
Лазерный контроль атмосферы: Пер. с англ.М., 1979;
Зеге Э.П., Иванов А.П., Кацев И.А. Перенос изображения в рассеивающей среде. Мн., 1985;
Иванов В.И., Малевич И.Л., Чайковский А.П. Многофункциональные лидарные системы. Мн., 1986.
фера- і ферымагнетыкі, якія маюць высокае значэнне каэрцытыўнай сілы (Hc = 103—106 А/м). Характарызуюцца высокім значэннем астаткавай магнітнай індукцыі і макс. значэннем магн. энергіі на ўчастку размагнічвання пятлі гістэрэзісу. Высокія значэнні Hc у М.м. абумоўлены затрымкай працэсу перамагнічвання. М.м. выкарыстоўваюць як пастаянныя магніты, а таксама ў гістэрэзісных рухавіках і ў якасці носьбітаў магн. памяці.
Паводле тэхналогіі фарміравання высокакаэрцытыўнага стану М.м. падзяляюць на: сталі, якія загартоўваюць на мартэнсіт; недэфармуемыя літыя сплавы жалеза, нікелю і алюмінію (алні) з дабаўкамі кобальту, тытану, медзі і інш.; дэфармуемыя сплавы жалеза, нікелю, медзі (куніфэ), кобальту, нікелю, медзі (куніко) і інш., а таксама сплавы з выкарыстаннем высакародных металаў (напр., сплавы кобальту з плацінай для вырабу звышмініяцюрных магнітаў); М.м., якія атрымліваюць прасаваннем парашкоў з іх далейшай тэрмічнай апрацоўкай. З метал. парашкоў прасаваннем без сувязнога ці спяканнем пры высокай т-ры вырабляюць металакерамічныя М.м., да якіх адносяцца матэрыялы на аснове інтэрметалідаў металаў групы жалеза з рэдказямельнымі элементамі (напр., SmCo5 пяцькобальт-самарый) для вырабу найб. энергаёмістых сучасных магнітаў. Прасаваннем парашкоў разам з сувязным, які полімерызуецца пры невысокай т-ры, атрымліваюць металапластычныя М.м. Да М.м. адносяцца таксама барыевы, стронцыевы і кобальтавы ферыты.
Літ.:
Сергеев В.В., Булыгина Т.И. Магнитотвердые материалы. М., 1980.
Г.І.Макавецкі.
Блок-схема студыйнага шпулечнага магнітафона: 1 — генератар высокай частаты; 2 — узмацняльнік запісу; 3 — узмацняльнік узнаўлення; 4 — шпулі з магнітнай стужкай; 5, 6, 7 — магнітныя галоўкі ўзнаўлення, запісу і сцірання (адпаведна).