ГІБРЫДЫЗА́ЦЫЯ,

скрыжаванне генетычна разнародных арганізмаў (раслін і жывёл) з мэтай атрымання лепшых па якасцях сартоў, відаў, парод; адзін з важнейшых фактараў эвалюцыі біял. форм у прыродзе. Скрыжаванне асобін аднаго і таго ж віду наз. ўнутрывідавой гібрыдызацыяй, а розных відаў або родаў — аддаленай гібрыдызацыяй. У эксперыменце магчыма гібрыдызацыя паміж непалавымі (саматычнымі) клеткамі вельмі аддаленых відаў (напр., чалавека і мышы, соі і гароху). Гібрыдызацыя саматычных клетак адкрывае падыходы да такіх праблем, як зменлівасць на клетачным узроўні, працэсы антагенезу, узнікненне пухлін і інш. У малекулярнай біялогіі шырока выкарыстоўваюць гібрыдызацыю малекул нуклеінавых кіслот рознага паходжання (гл. Генетычная інжынерыя).

У аснове гібрыдызацыі ляжыць здольнасць раслін і жывёл да палавога ўзнаўлення шляхам апладнення. Натуральная гібрыдызацыя адбываецца спантанна ў прыродных умовах, штучная гібрыдызацыя кіруецца чалавекам шляхам падбору пар з пэўнымі прыкметамі і ўласцівасцямі, якія неабходна атрымаць у патомкаў (якасць, буйнаплоднасць, прадукцыйнасць, ранняспеласць, устойлівасць да хвароб і шкоднікаў, марозаўстойлівасць і інш.). У селекцыі раслін найб. пашырана ўнутрывідавая гібрыдызацыя. Нескрыжавальнасць пар і стэрыльнасць гібрыдаў пры аддаленай гібрыдызацыі пераадольваюцца метадамі поліплаідыі і бекросу, папярэднім вегетатыўным збліжэннем і інш. У жывёлагадоўлі адрозніваюць уласна гібрыдызацыю (атрыманне гібрыдаў паміж відамі і родамі розных жывёл, напр., буйной рагатай жывёлы з якам і зебу, свойскай свінні з дзіком і інш.) і міжнароднае скрыжаванне (унутрывідавую гібрыдызацыю, якая з’яўляецца метадам прамысл. развядзення жывёл). Развіваецца таксама ўнутрыпародная (міжлінейная) гібрыдызацыя адселекціраваных па пэўных прыкметах парод, тыпаў, ліній.

А.Т.Купцова.

т. 5, с. 216

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БЯЛКІ́,

пратэіны, прыродныя высокамалекулярныя арган. рэчывы, малекулы якіх складаюцца з астаткаў амінакіслот. Адзін з асн. хім. кампанентаў абмену рэчываў і энергіі жывых арганізмаў. Абумоўліваюць іх будову, гал. адзнакі, функцыі, разнастайнасць і адаптацыйныя магчымасці, удзельнічаюць ва ўтварэнні клетак, тканак і органаў (структурныя бялкі), у рэгуляцыі абмену рэчываў (гармоны), з’яўляюцца запасным пажыўным рэчывам (запасныя бялкі). Складаюць матэрыяльную аснову амаль усіх жыццёвых працэсаў: росту, стрававання, размнажэння, ахоўных функцый арганізма (гл. Антыцелы, Імунаглабуліны, Таксіны), утварэння генет. апарату і перадачы спадчынных прыкмет (нуклеапратэіды), пераносу ў арганізме рэчываў (транспартныя бялкі), скарачэнняў мышцаў, перадачы нерв. імпульсаў і інш.; ферменты бялковай прыроды выконваюць у арганізме спецыфічныя каталітычныя функцыі, выключна важнае значэнне ў рэгуляцыі фізіял. працэсаў маюць бялкі.-гармоны. Сінтэзуюцца бялкі з неарган. рэчываў раслінамі і некат. бактэрыямі. Жывёлы і чалавек атрымліваюць гатовыя бялкі з ежы. З прадуктаў іх расшчаплення (пептыдаў і амінакіслот) у арганізме сінтэзуюцца спецыфічныя ўласныя бялкі, дзе яны няспынна разбураюцца і замяняюцца зноў сінтэзаванымі. Біясінтэз бялкоў ажыццяўляецца па матрычным прынцыпе з удзелам ДНК, РНК, пераважна ў рыбасомах клетак і інш. Паслядоўнасць амінакіслот у бялках адлюстроўвае паслядоўнасць нуклеатыдаў у нуклеінавых к-тах. Паводле паходжання і крыніц атрымання бялкоў падзяляюцца на раслінныя, жывёльныя і бактэрыяльныя, паводле хім. саставу — на простыя (некан’югіраваныя) — пратэіны і складаныя (кан’югіраваныя) — пратэіды. Простыя складаюцца з астаткаў амінакіслот, што злучаны паміж сабою пептыднай сувяззю (—NH—CO) у доўгія ланцугі — поліпептыды, складаныя — з простага бялку, злучанага з небялковым арган. ці неарган. кампанентам непептыднай прыроды, т.зв. прастэтычнай групай, далучанай да поліпептыднай часткі. Сярод складаных бялкоў паводле тыпу прастэтычнай групы вылучаюць нуклеапратэіды, фосфапратэіды, глікапратэіды, металапратэіды, гемапратэіды, флавапратэіды, ліпапратэіды і інш. У састаў бялкоў уваходзіць ад 50 да 6000 і больш астаткаў 20 амінакіслот, што ўтвараюць складаныя поліпептыдныя ланцугі. Амінакіслотны састаў розных бялкоў неаднолькавы і з’яўляецца іх важнейшай характарыстыкай, а таксама мерай харч. каштоўнасці. Паслядоўнасць амінакіслот у кожным бялку вызначаецца паслядоўнасцю монануклеатыдных буд. блокаў у асобных адрэзках малекулы ДНК. Вядома амінакіслотная паслядоўнасць некалькіх соцень бялкоў (напр., адрэнакортыкатропнага гармону чалавека, рыбануклеазы, цытахромаў, гемаглабіну і інш.). Парушэнні амінакіслотнай паслядоўнасці ў малекуле бялку выклікаюць т.зв. малекулярныя хваробы. Амінакіслотную паслядоўнасць поліпептыднага ланцуга для малекулы гармону інсуліну ўстанавіў англ. біяхімік Ф.Сэнгер (1953). Звесткі пра колькасць адрозненняў у амінакіслотных паслядоўнасцях гамалагічных бялкоў, узятых з розных відаў арганізмаў, выкарыстоўваюць пры складанні эвалюцыйных картаў, якія адлюстроўваюць паслядоўныя этапы ўзнікнення і развіцця пэўных відаў арганізмаў у працэсе эвалюцыі.

Агульны хім. састаў бялкоў (у % у пераліку на сухое рэчыва): C—50—55, O—21—23, N—15—18, H—6—7,5, S—0,3—2,5, P—1—2, і інш. Малекулярная маса ад 5 тыс. да 10 млн. Большасць бялкоў раствараецца ў вадзе і ўтварае малекулярныя растворы. Па форме малекул адрозніваюць бялкі фібрылярныя (ніткападобныя) і глабулярныя (згорнутыя ў кампактную структуру сферычнай формы); па растваральнасці ў вадзе, растворах нейтральных соляў, шчолачах, кіслотах і арган. растваральніках вылучаюць альбуміны, гістоны, глабуліны, глютэліны, праламіны, пратаміны і пратэіноіды. Бялкі маюць кіслыя карбаксільныя і амінныя групы, таму ў растворах яны амфатэрныя (маюць уласцівасці асноў і к-т). Пры гідролізе яны распадаюцца да амінакіслот; пад уплывам розных фактараў здольныя да дэнатурацыі і каагуляцыі, уступаюць у рэакцыі акіслення, аднаўлення, нітравання і інш. Пры пэўных значэннях pH у растворах бялкоў пераважае дысацыяцыя тых ці інш. груп, што надае ім адпаведны зарад і выклікае рух у электрычным полі — электрафарэз. Структура бялкоў характарызуецца амінакіслотным саставам, парадкам чаргавання амінакіслотных астаткаў у поліпептыдных ланцугах, іх даўжынёй і размеркаваннем у прасторы. Адрозніваюць 4 парадкі (узроўні) структуры бялкоў: першасную (лінейная паслядоўнасць амінакіслотных астаткаў у поліпептыдным ланцугу), другасную (прасторавая, найчасцей спіральная прасторавая канфігурацыя, якую прымае сам поліпептыдны ланцуг), трацічную (трохмерная канфігурацыя, якія ўзнікае ў выніку складвання або закручвання структур другаснага парадку ў больш кампактную глабулярную форму) і чацвярцічную (злучэнне некалькіх частак з трацічнай структурай у адну больш буйную комплексную праз некавалентныя сувязі). Найб. устойлівая першасная структура бялкоў, іншыя лёгка разбураюцца пры павышэнні т-ры, рэзкім змяненні pH асяроддзя і інш. уздзеяннях (дэнатурацыя бялкоў), што вядзе да страты асн. біял. уласцівасцяў. Фарміраванне прасторавай канфігурацыі малекул бялку вызначаецца наяўнасцю ў поліпептыдных ланцугах вадародных, дысульфідных, эфірных і салявых сувязяў, сіл Ван дэр Ваальса і інш. Уласцівасці бялкоў залежаць ад іх хім. будовы і прасторавай арганізацыі (канфармацыі). Наяўнасць некалькіх узроўняў арганізацыі Б. забяспечвае іх вял. разнастайнасць у прыродзе (напр., у клетках бактэрыі Escherichia coli каля 3000 розных бялкоў, у арганізме чалавека больш за 50 000). Кожны від арганізмаў мае ўласцівы толькі яму набор бялкоў, па якім ён можа быць індэнтыфікаваны. Органы і тканкі жывых арганізмаў маюць розную колькасць бялкоў (у % да сырой вагі); 6,5—8,5 у крыві, 7—9 у мозгу, 16—18 у сэрцы, 18—23 у мышцах, 10—20 у насенні злакаў, 20—40 у насенні бабовых, 1—3 у лісці большасці раслін. Па харч. каштоўнасці бялкі падзяляюць на паўнацэнныя (маюць усе амінакіслоты, неабходныя жывёльнаму арганізму для сінтэзу бялкоў сваіх тканак) і непаўнацэнныя (у складзе малекул няма некаторых амінакіслот). Сутачная патрэба дарослага чалавека ў бялках 100—120 г. Арганізм расходуе ўласныя бялкі, калі ў ежы іх менш за норму. Многія прыродныя бялкі і бялковыя ўтварэнні выкарыстоўваюць у прам-сці (напр., для вырабу скуры, шэрсці, натуральнага шоўку, казеіну, пластмасаў і інш.), медыцыне і ветэрынарыі (як лек. сродкі і біястымулятары, напр., інсулін пры цукр. дыябеце, сываратачны альбумін як заменнік крыві, гама-глабулін для прафілактыкі інфекц. захворванняў, бялкі-ферменты для лячэння парушэнняў абмену рэчываў, гідралізатары бялкоў для штучнага жыўлення). Для атрымання пажыўных і кармавых бялкоў выкарыстоўваюць мікрабіял. сінтэз. Вядуцца даследаванні па штучным сінтэзе бялковых малекул (штучна сінтэзаваны фермент рыбануклеаза і інш.). Бялкі — адзін з гал. аб’ектаў даследаванняў біяхіміі, імуналогіі і інш. раздзелаў біял. навукі.

Літ.:

Бохински Р. Современные воззрения в биохимии: Пер. с англ. М., 1987;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Гершкович А.А. От структуры к синтезу белка. Киев, 1989;

Овчинников Ю.А. Химия жизни: Избр. тр. М., 1990.

У.М.Рашэтнікаў.

т. 3, с. 397

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АЛКАЛО́ІДЫ

(ад позналац. alcali шчолач + грэч. eidos від),

група прыродных азотазмяшчальных злучэнняў, пераважна расліннага паходжання. Адкрыты ў пач. 19 ст.

Першы выдзелены морфій (марфін) з опію (1806), потым стрыхнін і бруцын, хінін і цынханін, кафеін, нікацін, атрапін і інш. У аснове будовы малекул алкалоідаў ляжыць гетэрацыкл ядра пірыдзіну, піралідзіну, імідазолу, аўрыну і інш. У залежнасці ад будовы алкалоіды класіфікуюць на групы: пірыдзіну (лабелін, нікацін, каніін), трапану (атрапін, какаін), хіналізідзіну (лупінін, цытызін) і інш.

Вядома некалькі тысяч алкалоідаў, з іх у жывёл толькі каля 50. Найб. багатыя алкалоідамі расліны з сям. бабовых, макавых, паслёнавых, казяльцовых, астравых, лебядовых. Колькасць алкалоідаў у тканках раслін звычайна вымяраецца долямі працэнта, рэдка дасягае 10—15% (кара хіннага дрэва). Асобныя алкалоіды спецыфічныя для пэўных родаў і сямействаў раслін, што з’яўляецца іх дадатковай сістэматычнай прыкметай. Лакалізуюцца алкалоіды ў органах раслін, напр., у хіннага дрэва ў кары, у аканіта ў клубнях, у какаінавага дрэва ў лісці. Многія з алкалоідаў у вял. дозах — моцныя яды, у малых — лек. рэчывы (шырока выкарыстоўваюцца ў фармацэўтычнай прам-сці, напр., атрапін, новакаін, кадэін, папаверын, хінін і інш.). Арганізм чалавека і жывёл яны ўзбуджаюць (кафеін, стрыхнін) або паралізуюць (марфін, рэзерпін). Некаторыя алкалоіды выкарыстоўваюць у сельскай гаспадарцы супраць шкоднікаў раслін (напр., анабазін, нікацін і іх сернакіслыя солі) і ў эксперым. біялогіі для вывядзення новых формаў с.-г. раслін (напр., калхіцын).

Літ.:

Орехов А.П. Химия алкалоидов растений СССР. М., 1965;

Мироненко А.В. Метады определения алкалоидов. Мн., 1966;

Лукнер М. Вторичный метаболизм у микроорганизмов, растений и животных: Пер. с англ. М., 1979.

т. 1, с. 262

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АМІНАКІСЛО́ТЫ,

арганічныя (карбонавыя) к-ты, якія маюць у малекуле адну або некалькі амінагруп (NH2). Адрозніваюць α-амінакіслоты, β-амінакіслоты, γ-амінакіслоты. У прыродзе пашыраны пераважна α-амінакіслоты агульнай формулы H2N-<FORMULA>-COOH. Амінакіслоты — бясколерныя крышталічныя рэчывы, большасць з якіх добра раствараецца ў вадзе. Амфатэрныя злучэнні маюць уласцівасці к-т і асноў. У жывых арганізмах знойдзена больш за 100 амінакіслот, каля 20 з іх асн. структурныя элементы малекул бялкоў. Іншыя амінакіслоты ўваходзяць у састаў ферментаў, гармонаў, некаторых антыбіётыкаў, вітамінаў і інш. рэчываў, неабходных для жыццядзейнасці арганізма. Могуць быць у тканках жывых арганізмаў у свабодным стане. Біял. роля і функцыі некаторых амінакіслот не высветлены. Шэраг амінакіслот (арніцін, цыстатыянін і інш.) — прамежкавыя прадукты абмену рэчываў.

У большасці прыродных амінакіслот амінагрупа звязана з вугляродам, самым блізкім да карбаксільнай групы; у малекуле β-амінакіслот яна звязана з другім пасля карбаксільнай групы вугляродам. α-амінакіслата падзяляецца на ацыклічныя (тлустага шэрагу) і цыклічныя (араматычнага шэрагу); па колькасці аміна- і карбаксільных груп у малекуле α-амінакіслот адрозніваюць монаамінамонакарбонавыя, напр. гліцын, серын, трэанін; монаамінадыкарбонавыя, напр. аспарагінавая кіслата, глутамінавая кіслата; дыамінамонакарбонавыя к-ты, напр. лізін, аргінін. У прыродзе большая частка α-амінакіслот сінтэзуецца раслінамі, некаторыя з іх (заменныя амінакіслоты) могуць сінтэзавацца і жывёльнымі арганізмамі з неарган. злучэнняў азоту, напр. аміяку і кетонакіслот. Незаменныя амінакіслоты (валін, лейцын, ізалейцын, лізін, трыптафан, феніланін, метыянін, трэанін і інш.) у чалавека і жывёл не ўтвараюцца і паступаюць у арганізм з ежай. Ад нястачы іх у арганізме ўзнікаюць розныя хваробы.

Атрымліваюць і сінтэтычна, у т. л. ва ўмовах, якія мадэліруюць атмасферу першабытнай Зямлі. Амінакіслоты выкарыстоўваюць у медыцыне, для павышэння біял. каштоўнасці некаторых харч. прадуктаў, як зыходныя прадукты ў прамысл. сінтэзе поліамідаў, фарбавальнікаў.

Структурныя формулы асноўных амінакіслот.

т. 1, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГА́ЗАВЫ ЛА́ЗЕР,

лазер з газападобным актыўным рэчывам. Актыўнае рэчыва (газ) змяшчаецца ў аптычны рэзанатар або прапампоўваецца праз яго. Інверсія заселенасці ўзроўняў энергіі (гл. Актыўнае асяроддзе) дасягаецца ўзбуджэннем атамаў дапаможнага рэчыва (напр., гелій, азот) і рэзананснай перадачай узбуджэння атамам рабочага рэчыва (неон, вуглякіслы газ). Паводле тыпу актыўнага рэчыва адрозніваюць атамарныя, іонныя і малекулярныя газавыя лазеры. Атрымана генерацыя пры выкарыстанні 44 актыўных атамарных асяроддзяў, іх іонаў з рознай ступенню іанізацыі, а таксама больш за 100 малекул і радыкалаў у газавай фазе. Газавыя лазеры маюць больш высокую монахраматычнасць, стабільнасць, кагерэнтнасць і накіраванасць выпрамянення ў параўнанні з лазерамі інш. тыпаў. Выкарыстоўваюцца ў метралогіі, галаграфіі, медыцыне, аптычных лініях сувязі, матэрыялаапрацоўцы (рэзка, зварка), лакацыі, фіз. даследаваннях, звязаных з атрыманнем і вывучэннем высокатэмпературнай плазмы і інш.

Для ўзбуджэння актыўнага рэчыва газавыя лазеры выкарыстоўваюць электрычныя разрады ў газах, пучкі зараджаных часціц, аптычную, хім. і ядз. пампоўку, цеплавое ўзбуджэнне, а таксама газадынамічныя метады і метады перадачы энергіі ў газавых сумесях. Найб. пашыраным атамарным газавым лазерам з’яўляецца гелій-неонавы лазер (магутнасць генерацыі да 100 мВт), які мае найвышэйшую стабільнасць параметраў генерацыі, надзейнасць і даўгавечнасць. Найб. магутная генерацыя іонных газавых лазераў атрымана на іонах аргону (да 500 Вт у неперарыўным рэжыме). Малекулярныя лазеры з’яўляюцца найб. магутнымі, напр. газавы лазер на вуглякіслым газе мае магутнасць да 1 МВт у неперарыўным рэжыме.

Першы газавы лазер на сумесі неону і гелію створаны ў 1960 амер. фізікамі А.Джаванам, У.Р.Бенетам і Д.Эрыятам. На Беларусі распрацоўкай і даследаваннем газавых лазераў займаюцца ў ін-тах фізікі, цепла- і масаабмену, фіз.-тэхн., малекулярнай і атамнай фізікі АН, НДІ прыкладных фіз. праблем пры БДУ, Гродзенскім ун-це і БПА.

Літ.:

Войтович А.П. Магнитооптика газовых лазеров. Мн., 1984;

Орлов Л.Н. Тепловые эффекгы в активных средах газовых лазеров. Мн., 1991;

Солоухин Р.И., Фомин Н.А. Газодинамические лазеры на смешении. Мн., 1984.

Л.М.Арлоў.

т. 4, с. 426

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРМО́НЫ

(ад грэч. hormaō прыводжу ў рух),

біялагічна актыўныя рэчывы, якія выдзяляюцца залозамі ўнутр. сакрэцыі ці спецыялізаванымі клеткамі. Спецыфічна ўздзейнічаюць на інш. органы і тканкі, забяспечваючы інтэграцыю біяхім. працэсаў у жывых арганізмах. Пад кантролем гармонаў адбываюцца ўсе этапы развіцця арганізма з моманту яго зараджэння, асн. працэсы яго жыццядзейнасці (ад транспартавання іонаў да счытвання генома, гл. Гарманальная рэгуляцыя). Эфекты дзеяння гармонаў выяўляюцца на ўзроўні цэласнага арганізма (напр., у зменах паводзін), асобных яго сістэм (нерв., стрававальнай, рэтыкулаэндатэліяльнай і інш.), органаў, клетак і іх арганел, ферментных сістэм і асобных ферментаў, на малекулярна-атамным і іонным узроўнях. Парушэнні сакрэцыі гармонаў (іх недахоп або лішак) вядуць да ўзнікнення эндакрынных хвароб, парушэнняў абмену рэчываў, утварэння злаякасных пухлін, развіцця аўтаімунных і інш. хвароб.

Вядома шмат гармонаў і гармонападобных рэчываў, у т. л. больш за 40 у млекакормячых. Іх класіфікуюць па месцы ўтварэння (гармоны гіпофіза, гармоны шчытападобнай залозы, гармоны наднырачнікаў і інш.) і па хім. прыродзе — стэроідныя (андрагены, эстрагены, кортыкастэроіды), пептыдна-бялковыя (інсулін, самататропны, лютэнізавальны, фалікуластымулявальны гармон і інш.), вытворныя амінакіслот (адрэналін, норадрэналін, тыраксін, трыёдтыранін і інш.), простагландзіны. Для гармонаў характэрны надзвычай высокая біял. актыўнасць (дзейнічаюць у мікраскапічных дозах), спецыфічнае і дыстатнае (аддаленне ад месца сінтэзу) дзеянне. Шэрагу гармонаў і гармонападобных рэчываў (т.зв. гарманоідаў, парагармонаў ці тканкавых гармонаў) уласціва мясц. дзеянне, якое рэалізуецца шляхам мясц. дыфузій (паракрынныя гармоны) і праз уплыў на клеткі, якія іх сінтэзуюць (аўтакрынныя гармоны); нейрамедыятары, сінтэзаваныя нерв. клеткамі, вылучаюцца непасрэдна нерв. канцамі. Гармоны адрозніваюцца па працягласці дзеяння: у нейрамедыятараў вымяраецца мілісекундамі, у пептыдных гармонаў — секундамі, у бялковых — мінутамі, у стэроідных — гадзінамі, у тыэроідных гармонаў — суткамі. Залежна ад хім. будовы малекул гармоны ўзаемадзейнічаюць з рэцэптарамі ў розных частках клеткі: стэроідныя ў цытаплазме, тырэоідныя ў ядры, бялкова-пептыдныя на вонкавым баку мембраны. Узаемадзеянне гармонаў з рэцэптарамі прыводзіць да актывацыі апошніх і фарміравання адпаведнай метабалічнай рэакцыі.

У раслін рэчывы, падобныя да жывёльных гармонаў, наз. фітагармонамі.

В.К.Кухта.

т. 5, с. 65

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНІЗАТРАПІ́Я

(ад грэч. anisos неаднолькавы + tropos напрамак),

1) у фізіцы — залежнасць фіз. (мех., аптычных, магн. і інш.) уласцівасцяў рэчыва ад напрамку. Натуральная анізатрапія — характэрная асаблівасць крышталёў; абумоўлена іх сіметрыяй і выяўляецца тым больш, чым яна меншая. Анізатрапія некаторых вадкасцяў (напр., вадкіх крышталёў) тлумачыцца асіметрыяй і пэўнай арыентацыяй малекул. У аморфных і полікрышталічных рэчывах анізатрапія бывае пры наяўнасці прыроднай (напр., драўніна) або штучнай тэкстуры (напр., пры пракатцы ліставой сталі зерні металу арыентуюцца ўздоўж напрамку пракаткі, у выніку чаго ствараецца анізатрапія мех. уласцівасцяў). Анізатрапія многіх уласцівасцяў крышталёў, напр. лінейнага цеплавога расшырэння, электраправоднасці, пругкіх уласцівасцяў, характарызуецца значэннямі адпаведных пастаянных уздоўж гал. восі сіметрыі і ўпоперак да яе. Аптычная анізатрапія выяўляецца ў выглядзе падвойнага праменепраламлення, дыхраізму, змен характару палярызацыі і вярчэння плоскасці палярызацыі святла. Натуральная аптычная анізатрапія крышталёў абумоўлена неаднолькавасцю ў розных напрамках поля сіл, якія ўтрымліваюць атамы ці іоны рашоткі. Штучная анізатрапія ствараецца ў ізатропных асяроддзях пад уздзеяннем вонкавых сіл ці палёў, што вызначаюць у асяроддзях пэўныя напрамкі, напр., у выніку ўздзеяння пругкіх дэфармацый, эл. поля, магн. поля (гл. Катона—Мутона эфект, Фарадэя эфект).

2) Анізатрапія ў геалогіі абумоўлена мікраслаістасцю, упарадкаванай арыентацыяй зерняў і крышталёў і мікратрэшчынаватасцю горных парод і мінералаў. Крышталі розных мінералаў выяўляюць анізатрапію розных уласцівасцяў: слюды — аптычных, мех. (спайнасці, пругкасці, трываласці); дыстэну — цвёрдасці; кварцу, турмаліну — аптычных, п’езаэлектрычнага эфекту; магнетыту — ферамагнітных; кальцыту — аптычных. Анізатрапія некаторых мінералаў выкарыстоўваецца ў прыладабудаванні. Анізатрапія масіваў горных парод вызначаецца ўпарадкаванымі лінейнымі ці плоскаснымі элементамі будовы (стратыфікаваныя асадкавыя і метамарфічныя тоўшчы горных парод з лінейна арыентаванымі структурамі, слаістасцю, макратрэшчынаватасцю і інш.). Пры горных работах найб. значэнне маюць дэфармацыйныя ўласцівасці парод.

3) У батаніцы — здольнасць розных органаў адной і той жа расліны займаць рознае становішча пры аднолькавым ўздзеянні пэўнага фактара вонкавага асяроддзя. Напр., пры бакавым асвятленні расліны яе верхавінка выгінаецца ў бок крыніцы святла, а лісцевыя пласцінкі займаюць перпендыкулярнае напрамку прамянёў становішча.

Літ.:

Шаскольская М.П. Очерки о свойствах кристаллов. 2 изд. М., 1978;

Сиротин Ю.М., Шаскольская М.П. Основы кристаллофизики. 2 изд. М., 1979.

т. 1, с. 368

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АДСО́РБЦЫЯ

(ад лац. ad... на, да + sorbere паглынаць),

паглынанне рэчыва з газавага або вадкага асяроддзя (адсарбату) паверхняй, мікрасітавінамі цвёрдага цела (адсарбенту) ці вадкасці. Адсорбцыя — прыватны выпадак сорбцыі, якая ўключае абсорбцыю. У аснове адсорбцыі ляжаць асаблівыя ўласцівасці рэчыва ў паверхневым слоі, колькасна яна характарызуецца паверхневым нацяжэннем. Падзяляецца на фізічную абсорбцыю і хемасорбцыю, без рэзкага размежавання паміж імі; часта спалучаецца ў адзіным працэсе.

Фізічная адсорбцыя — вынік міжмалекулярных узаемадзеянняў (дысперсных сіл і сіл электрастатычнага характару); менш трывалая, абарачальная (адначасова адбываецца дэсорбцыя) працякае адвольна з памяншэннем паверхневай свабоднай энергіі і выдзяленнем цяпла. Скорасць фіз. адсорбцыі залежыць ад хім. прыроды і геам. структуры адсарбенту, канцэнтрацыі і прыроды рэчываў, што паглынаюцца, т-ры, дыфузіі і міграцыі малекул адсарбату; калі яна роўная скорасці дэсорбцыі, настае адсарбцыйная раўнавага. Пры хемасорбцыі малекулы адсарбату і адсарбенту ўтвараюць хім. злучэнні.

Велічыню адсорбцыі адносяць да адзінкі паверхні ці масы адсарбенту; яна павялічваецца пры павышэнні канцэнтрацыі адсарбату і памяншаецца пры павышэнні т-ры. Пры цвёрдых адсарбентах велічыню адсорбцыі вызначаюць па колькасці паглынутага рэчыва ці па змене канцэнтрацыі адсарбату; пры вадкіх — па змене паверхневага нацяжэння. Адсорбцыя адыгрывае важную ролю ў цеплаабмене, стабілізацыі калоідных сістэм (гл. Дысперсныя сістэмы, Каагуляцыя, Міцэлы), у гетэрагенных рэакцыях (гл. Тапамічныя рэакцыі, Каталіз). Выкарыстоўваецца ў храматаграфіі, прамысл. тэхналогіях, мае месца ў многіх біял. і глебавых працэсах. Адсорбцыя ў біялагічных сістэмах — першая стадыя паглынання рэчываў з навакольнага асяроддзя субмікраскапічнымі калоіднымі структурамі, арганеламі і клеткамі. У рознай ступені ўласціва працэсам функцыянавання біял. мембран, узаемадзеяння ферментаў з субстратам, антыцелаў з антыгенамі (на пач. стадыі), нейтралізацыі таксічных агентаў, усмоктвання пажыўных рэчываў і інш., дзе істотнае значэнне маюць паверхневыя ўласцівасці асобных кампанентаў біял. сістэм. У мед. практыцы індыферэнтнымі, нерастваральнымі адсарбентамі карыстаюцца для выдалення з арганізма соляў цяжкіх металаў, алкалоідаў, харч. інтаксікантаў, пры метэарызме, вонкава — у выглядзе прысыпак, мазяў і пастаў — пры запаленні скуры і слізістых абалонак для падсушвання. На з’явах адсорбцыі грунтуецца шэраг метадаў біяхім. даследаванняў.

Літ.:

Адамсон А. Физическая химия поверхностей: Пер. с англ. М., 1979;

Кельцев Н.В. Основы адсорбционной техники. 2 изд. М., 1984.

т. 1, с. 138

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСМАТЫ́ЧНЫ ЦІСК, дыфузны ціск,

лішкавы гідрастатычны ціск раствору, які перашкаджае дыфузіі растваральніку праз паўпранікальную перагародку; тэрмадынамічны параметр. Характарызуе імкненне раствору да зніжэння канцэнтрацыі пры сутыкненні з чыстым растваральнікам пры сустрэчнай дыфузіі малекул растворанага рэчыва і растваральніку. Абумоўлены змяншэннем хімічнага патэнцыялу растваральніку ў прысутнасці растворанага рэчыва. Роўны лішкаваму вонкаваму ціску, які неабходна прыкласці з боку раствору, каб спыніць осмас. Вымяраецца ў паскалях.

Вымярэнні асматычнага ціску пачаў у 1877 ням. батанік В.Пфефер у растворы трысняговага цукру. Па яго даных галандскі хімік Я.Х.Вант-Гоф устанавіў у 1887, што залежнасць асматычнага ціску ад канцэнтрацыі цукру па форме супадае з Бойля-Марыёта законам для ідэальных газаў. Асматычны ціск вымяраюць з дапамогай асмометраў. Статычны метад вымярэння асматычнага ціску заснаваны на вызначэнні лішкавага гідрастатычнага ціску па вышыні слупка вадкасці H пасля ўстанаўлення стану раўнавагі пры роўнасці вонкавых ціскаў PА і PБ; дынамічны метад зводзіцца да вымярэння скорасці V усмоктвання і выціскання растваральніку з асматычнай ячэйкі пры розных значэннях лішкавага ціску P = PА  – PБ з наступнай інтэрпаляцыяй атрыманых даных да V=0 пры лішкавым ціску Δp, роўным асматычнаму ціску. Па велічыні асматычнага ціску распазнаюць: ізатанічныя, або ізаасматычныя, растворы, якія маюць аднолькавы асматычны ціск (незалежна ад саставу), гіпертанічныя з больш высокім Асматычным ціскам і гіпатанічныя растворы з больш нізкім асматычным ціскам.

Асматычны ціск адыгрывае важную ролю ў жыццядзейнасці жывых клетак і арганізмаў. У клетках і біял. вадкасцях ён залежыць ад канцэнтрацыі раствораных у іх рэчываў. Па велічыні асматычнага ціску вадкасцяў унутр. асяроддзя арганізма (кроў, гемалімфа і інш.) водныя арганізмы падзяляюцца на гіпер-, гіпа- і ізаасматычныя. Сярэдняя велічыня і дыяпазон асматычнага ціску ў розных арганізмаў розныя і залежаць ад віду і ўзросту арганізма, тыпу клетак і асматычнага ціску навакольнага асяроддзя (напр., асматычны ціск клетачнага соку наземных органаў балотных раслін 0,2—1,6 МПа, у стэпавых 0,8—0,4, у дажджавых чарвякоў 0,36—0,48, у прэснаводных рыб 0,6—0,66, у акіянічных касцістых рыб 0,78—0,85, акулавых 2,2—2,3, млекакормячых 0,66—0,8 МПа). У гіперасматычных арганізмаў (прэснаводныя жывёлы, некаторыя марскія храстковыя рыбы — акулы, скаты; усе расліны) унутр. Асматычны ціск перавышае асматычны ціск навакольнага асяроддзя, таму іоны могуць актыўна паглынацца арганізмам і ўтрымлівацца ў ім, а вада паступае праз біял. мембраны пасіўна, у адпаведнасці з асматычным градыентам. У гіпаасматычных жывёл (касцістыя рыбы, некаторыя марскія паўзуны, птушкі) асматычны ціск крыві меншы за асматычны ціск навакольнага асяроддзя. Адноснае пастаянства Асматычнага ціску забяспечваецца водна-салявым абменам праз осмарэгулявальныя органы (гл. ў арт. Осмарэгуляцыя).

Літ.:

Курс физической химии. Т.1—2. 2 изд. М., 1970—73;

Пасынский А.Г. Коллоидная химия. 3 изд. М., 1968;

Гриффин Д., Новик Эл. Живой организм: Пер. с англ. М., 1973.

т. 2, с. 38

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БІЯХІ́МІЯ

(ад бія... + хімія),

біялагічная хімія, навука, якая вывучае хім. састаў арганізмаў і хім. працэсы, звязаныя з іх жыццядзейнасцю. Адрозніваюць статычную біяхімію, якая займаецца пераважна аналізам хім. саставу арганізмаў і цесна ўзаемазвязана з біяарганічнай хіміяй і малекулярнай біялогіяй, дынамічную біяхімію, што даследуе працэсы ператварэння рэчываў у арганізме, і функцыянальную біяхімію, якая высвятляе сувязь паміж хім. ператварэннямі малекул і функцыяй клеткі ці органа (механізмы сакрэцыі, мышачнае скарачэнне, перадача спадчынных уласцівасцяў і інш.), а таксама механізмы рэгуляцыі працэсаў жыццядзейнасці. Паводле аб’ектаў даследавання адрозніваюць біяхімію мікраарганізмаў, раслін, жывёл і чалавека. Шэраг раздзелаў біяхіміі вылучаюць у асобныя навук. дысцыпліны: біяхімія вітамінаў, гармонаў, клінічная біяхімія і інш. Асобна ідуць параўнальная і эвалюцыйная біяхімія, якія займаюцца вывучэннем узаемасувязі паміж рознымі жывымі арганізмамі на малекулярным узроўні.

Як асобная навука біяхімія сфарміравалася ў 19 ст. Гісторыя развіцця біяхіміі бярэ пачатак ад аграхімікаў (ням. ўрач і прыродазнавец Парацэльс, 16 ст., і інш.), якія разглядалі жыццядзейнасць чалавека з пазіцый хіміі, увялі ў практыку лячэння шэраг хім. прэпаратаў. У пач. 19 ст. праведзены даследаванні па вывучэнні хім. саставу раслінных і жывёльных клетак, у 1828 сінтэзавана мачавіна (ням. хімік Ф.Вёлер), у 1842 у Германіі выдадзены першы падручнік па біяхіміі (І.Зіман). Ва ун-тах Еўропы, Расіі (Казань, А.Я.Данілеўскі, 1863) адкрыты кафедры біяхіміі. У 2-й пал. 19 ст. назапашаны некаторыя звесткі пра састаў і хім. пераўтварэнні бялкоў, тлушчу і вугляводаў, працэс браджэння (ням. вучоныя Ю.Лібіх, Э.Бухнер, франц. Л.Пастэр), фотасінтэз (К.А.Ціміразеў). Вял. ўклад у развіццё біяхіміі ў Расіі зрабілі М.В.Ненцкі, адзін з заснавальнікаў тэорыі біясінтэзу мачавіны ў арганізме млекакормячых, Я.С.Лондан (распрацаваў метады ангіястаміі і арганастаміі для прыжыццёвага даследавання абменных працэсаў на цэлым арганізме), У.І.Паладзін і Дз.М.Пранішнікаў (вывучалі абмен азоту ў раслінах), А.М.Бах (заснавальнік школы рус. біяхімікаў; даследаваў хімізм фотасінтэзу і акісляльныя працэсы ў клетцы) і інш.

На Беларусі біяхім. даследаванні праводзяцца з канца 19 ст. Цяпер вядуцца ў біял. ін-тах АН Беларусі, НДІ мед. і с.-г. профілю, на адпаведных кафедрах і ў навук. цэнтрах ВНУ. Найб. вядомы працы па біяхіміі фотасінтэзу (Ц.М.Годнеў, А.А.Шлык, А.С.Вечар), глебавых ферментаў (В.Ф.Купрэвіч), біяхіміі мікраэлементаў (В.А.Лявонаў, Ф.Я.Беранштэйн), вітамінаў (Ю.М.Астроўскі), біяхіміі біял. мембранаў (С.В.Конеў), па патахіміі (М.Ф.Меражынскі), біяхіміі апрамененага арганізма (Л.С.Чаркасава). Даследуюцца біяхім. працэсы ў тканках, асобныя праблемы тэхн. біяхіміі, малекулярнай біяхіміі, біяэнергетыкі; вывучаюцца лакалізацыя і ператварэнне рэчываў у клетках і тканках, сувязь паміж будовай біяпалімераў і інш. біялагічна актыўных прыродных злучэнняў з іх функцыямі. Патрабуюць вырашэння праблемы: вывучэнне малекулярных асноў злаякаснага росту, імунітэту, малекулярных механізмаў памяці, асноў рацыянальнага харчавання чалавека і жывёл, малекулярных асноў спадчынных і саматычных захворванняў чалавека, арганізацыі і механізмаў дзейнасці генома, прынцыпаў біял. пазнавання, структуры і функцыі біял. мембранаў, праблемы ўзаемаадносін чалавека і навакольнага асяроддзя.

Літ.:

Основы биохимии: Пер. с англ. Т. 1—3. М., 1981;

Кретович В.Л. Очерки по истории биохимии в СССР. М., 1984;

Ленинджер А. Основы биохимии: Пер. с англ. Т. 1—3. М., 1985;

Биохимия человека. Т. 1—2. М., 1993.

В.К.Кухта.

т. 3, с. 181

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)