со́нечны snnig, Snnen-; solr, solrisch;

со́нечнае зацьме́нне астр. Snnenfinsternis f -;

со́нечная пля́ма Snnenfleck m -(e)s, -e;

со́нечны пако́й snniges Zmmer;

со́нечнае надво́р’е snniges Wetter;

со́нечная сістэ́ма астр. Snnensystem n -s;

со́нечны ўда́р Snnenstich m;

со́нечныя акуля́ры Snnenbrille f -, -n;

со́нечная акты́ўнасць метэар. Snnenaktivität [-vi-] f -;

со́нечная радыя́цыя Snnenstrahlung f -;

со́нечная эне́ргія фіз., геагр. Snnenenergie f -;

со́нечны год астр. Snnenjahr n -(e)s, -e;

со́нечны дыск Snnenscheibe f -, -n;

со́нечнае спляце́нне анат. Snnengeflecht n -(e)s, Solrplexus [-plxus] m -

Беларуска-нямецкі слоўнік (М. Кур'янка, 2010, актуальны правапіс) 

А́ТАМ (ад грэч. atomos непадзельны),

часціца рэчыва, найменшая частка хім. элемента, якая з’яўляецца носьбітам яго ўласцівасцяў. Кожнаму элементу адпавядае пэўны род атама, якія абазначаюцца сімвалам хім. элемента і існуюць у свабодным стане або ў злучэнні з інш. атамамі, у складзе малекул. Разнастайнасць хім. злучэнняў абумоўлена рознымі спалучэннямі атамаў у малекулах. Фіз. і хім. ўласцівасці свабоднага атама вызначаюцца яго будовай. Атам мае дадатна зараджанае цэнтр. атамнае ядро і адмоўна зараджаныя электроны і падпарадкоўваецца законам квантавай механікі.

Асн. характарыстыка атама, што абумоўлівае яго прыналежнасць да пэўнага элемента, — зарад ядра, роўны +Ze, дзе Z = 1, 2, 3, ... — атамны нумар элемента, e — элементарны эл. зарад. Ядро з зарадам +Ze утрымлівае вакол сябе Z электронаў з агульным зарадам -Ze. У цэлым атам электранейтральны. Пры страце электронаў ён ператвараецца ў дадатна зараджаны іон. Маса атама ў асноўным вызначаецца масай ядра і прапарцыянальная яго атамнай масе, якая прыблізна роўная масаваму ліку. Пры яго павелічэнні ад 1 (для атама вадароду, Z = 1) да 250 (для атама трансуранавых элементаў, Z>92) маса атама мяняецца ад 1,67·10​−27 да 4·10​−25 кг. Памеры ядра (парадку 10​−14—10​−15 м) вельмі малыя ў параўнанні з памерамі ўсяго атама (10​−10 м). Паводле квантавай тэорыі, для электронаў у атаме магчымы толькі пэўныя (дыскрэтныя) значэнні энергіі, якія для атама вадароду і вадародападобных іонаў вызначаюцца формулай En = hcR Z2 n2 , дзе h — Планка пастаянная, c — скорасць святла, R — Рыдберга пастаянная, n = 1, 2, 3 ... цэлы лік, які вызначае магчымае значэнне энергіі і наз. галоўным квантавым лікам. Велічыня hcR=13,60 эВ ёсць энергія іанізацыі атама вадароду, г. зн. энергія, неабходная на тое, каб перавесці электрон з асн. ўзроўню (n=1) на ўзровень n=∞, што адпавядае адрыву электрона ад ядра. Электроны ў атаме пераходзяць з аднаго ўзроўню энергіі на другі паводле квантавага закону EiEk=. Кожнаму значэнню энергіі адпавядае 2n​2 розных квантавых станаў, што адрозніваюцца значэннямі трох дыскрэтных фізічных велічыняў: арбітальнага моманту імпульсу Me, яго праекцыі Mez на некаторы напрамак z і праекцыі (на той жа напрамак) спінавага моманту імпульсу Msz. Me вызначаецца азімутальным квантавым лікам 1, які прымае n значэнняў (1=0, 1, 2 ..., n-1); Mez — арбітальным магнітным квантавым лікам me, які прымае 21+1 значэнняў (m1 = 1, 1-1, ..., -1); Msz спінавым магнітным квантавым лікам ms, які мае значэнні ½ і −½ (гл. Спін, Квантавыя лікі). Агульны лік станаў з аднолькавай энергіяй (зададзена n) наз. ступенню выраджэння ці статыстычнай вагой. Для атама вадароду і вадародападобных іонаў ступень выраджэння ўзроўняў энергіі gn=2n2. Зададзенаму набору квантавых лікаў n, 1, me адпавядае пэўнае размеркаванне электроннай шчыльнасці (імавернасці знаходжання электрона ў розных месцах атама). Паводле Паўлі прынцыпу, у атаме не можа быць двух (або больш) электронаў у аднолькавым стане, таму максімальны лік электронаў у атаме з зададзенымі n і 1 роўны 2 (21 + 1). Электроны ўтвараюць электронную абалонку атама і цалкам яе запаўняюць. На аснове ўяўлення пра паступовае запаўненне, з павелічэннем Z, усё больш аддаленых ад ядра электронных абалонак можна растлумачыць перыядычнасць хім. і фіз. уласцівасцяў элементаў. Гл. таксама Перыядычная сістэма элементаў Мендзялеева.

Літ.:

Шпольский Э.В. Атомная физика. Т. 1—2. М., 1984;

Борн М. Атомная физика. М., 1970;

Гольдин Л.Л., Новикова Г.И. Введение в квантовую физику. М., 1988;

Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика;

Нерелятивистская теория. 4 изд. М., 1989.

М.А.Ельяшэвіч.

т. 2, с. 66

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

НЕАРГАНІ́ЧНАЯ ХІ́МІЯ,

навука пра хім. элементы і ўтвораныя імі простыя і складаныя рэчывы, акрамя арганічных злучэнняў. Асн. задачы Н.х. — даследаванне будовы, саставу і ўласцівасцей простых рэчываў і хім. злучэнняў, навук. абгрунтаванне і распрацоўка спосабаў атрымання матэрыялаў, неабходных сучаснай тэхніцы. Асн. метады даследаванняў грунтуюцца на аналізе (сукупнасць аперацый, скіраваных на вызначэнне якаснага і колькаснага саставу рэчыва) і сінтэзе (атрыманне складаных хім. злучэнняў з больш простых ці з хім. элементаў). У Н.х. выкарыстоўваюцца тэарэт. ўяўленні і метады фізікі, крышталяграфіі, крышталяхіміі, а таксама метады аналіт., фіз. і калоіднай хіміі. Па аб’ектах, якія вывучаюцца, падзяляюць: на хімію асобных элементаў, хімію груп элементаў перыяд. сістэмы (хімія шчолачных металаў, галагенаў, шчолачназямельных элементаў, халькагенаў і інш.), хімію пэўных злучэнняў некаторых элементаў (хімія сілікатаў, пераксідных злучэнняў і інш.), хімію блізкіх па ўласцівасцях і галінах выкарыстання рэчываў (хімія тугаплаўкіх рэчываў, інтэрметалідаў, паўправаднікоў, высакародных металаў, неарган. палімераў і інш.), а таксама хімію элементаў, аб’яднаных у групы па адзнаках, якія склаліся гістарычна (напр., хімія рэдкіх элементаў). Самаст. раздзел Н.х. — каардынацыйная хімія, ці хімія каардынацыйных злучэнняў (ш. Комплексныя злучэнні). Звычайна «адасабляюць таксама хімію пераходных элементаў.

Гісторыя Н.х. пачынаецца з глыбокай старажытнасці; першыя звесткі пра золата, серабро, медзь, волава і інш. металы адносяцца да 3 ст. да н.э. У сярэднія вякі, калі панавала алхімія, былі адкрыты мыш’як, сурма, фосфар, цынк, вісмут, атрыманы к-ты (серная, саляная, азотная), некаторыя солі і інш. неарган. злучэнні. Як самаст. навука пачала развівацца ў 18—19 ст., калі былі ўстаноўлены асн. законы хім. атамістыкі: законы захавання масы пры хім. рэакцыях (М.В.Ламаносаў, 1756; А.Лавуазье, 1770), пастаянства саставу (Ж.Пруст, 1801—07), кратных адносін закон (Дж.Дальтан, 1803). У пач. 19 ст. Ё.Я.Берцаліус апублікаваў табліцу атамных мас 45 вядомых элементаў; А.Авагадра і Ж.Л.Гей-Люсак адкрылі газавыя законы; П.Л.Дзюлонг і А.Пці вынайшлі правіла, што звязвае цеплаёмістасць з колькасцю атамаў у злучэнні; Г.І.Гес адкрыў закон пастаянства колькасці цеплаты (гл. Геса закон) узнікла атамна-малекулярная тэорыя. У 1807 Г.Дэві ажыццявіў электроліз гідраксідаў натрыю і калію і ўвёў у практыку новы метад атрымання простых рэчываў. У 1834 М.Фарадэй апублікаваў асн. законы электрахіміі. Наступны этап у развіцці Н.х. звязаны з адкрыццём перыяд. закону і перыядычнай сістэмы элементаў Мендзялеева (1869), а таксама з дасягненнямі фізікі, якія дазволілі даць перыяд. закону фіз. абгрунтаванне, заснаванае на тэорыі будовы атама. У пач. 20 ст. прапанаваны першыя электронныя тэорыі валентнасці (В.Косель, 1915; Г.Льюіс, 1916), распрацаваны асновы каардынацыйнай хіміі (Л.А.Чугаеў, І.І.Чарняеў). Даследаванне прыроднай радыеактыўнасці прывяло да адкрыцця прыродных радыеактыўных элементаў і ўзнікнення радыяхіміі. Адкрыццё ў 1934 штучнай радыеактыўнасці дазволіла атрымаць новыя хім. элементы і ізатопы, запоўніць прабелы ў перыяд. сістэме элементаў і дабудаваць яе трансуранавымі элементамі. Развіццё ядз. энергетыкі, рэактыўнай тэхнікі, электронікі спрыяла стварэнню новых сінт. матэрыялаў і тэхналогій з выкарыстаннем дасягненняў у галіне тэхнікі высокіх тэмператур і ціску, глыбокага вакууму, распрацоўкі метадаў атрымання матэрыялаў высокай чысціні. Важная задача сучаснай Н.х. — даследаванне хім. уласцівасцей і спосабаў атрымання рэдкіх металаў (ніобій, тытан, малібдэн, тантал) і сплаваў на іх аснове, вывучэнне неарганічных палімераў і сіталаў. Н.х. з’яўляецца таксама навук. базай хім. вытв-сці неарган. рэчываў (солей, Кіслот, шчолачаў і інш.), неабходных для развіцця цяжкай індустрыі і сельскай гаспадаркі.

На Беларусі даследаванні па Н.х. вядуцца ў Ін-це агульнай і неарган. хіміі Нац. АН (сінтэз эмаляў, адсарбентаў, каталізатараў, керамічных матэрыялаў і мінер. угнаенняў), Ін-це фізікі цвёрдага цела і паўправаднікоў Нац. АН і БДУ (сінтэз звышцвёрдых і паўправадніковых матэрыялаў, сегнетаэлектрыкаў і ферытаў), Бел. тэхнал. ун-це (фосфарныя ўгнаенні, пераўскіты, ферыты), НДІ будматэрыялаў (пенашкло, пенабетон, вапна і інш.), Бел. ун-це інфарматыкі і радыёэлектронікі (паўправадніковыя злучэнні).

Літ.:

Джуа М. История химии: Пер. с итал. М., 1975;

Штрубе В. Пути развития химии: Пер. с нем. Т. 1—2. М., 1984.

У.С.Камароў.

т. 11, с. 258

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАРАЧАТРЫВА́ЛЫЯ МАТЭРЫЯ́ЛЫ,

матэрыялы, якія не дэфармуюцца і не разбураюцца пры высокіх т-рах пад уздзеяннем мех. нагрузак. Гарачатрываласць вызначаецца ў асноўным межамі паўзучасці і працяглай трываласці, дасягаецца падборам хім. саставу матэрыялу (сплаву) у спалучэнні з пэўнымі ўмовамі крышталізацыі і тэрмічнай апрацоўкі.

Гарачатрывалая сталь мае акрамя жалеза хром, нікель, марганец і інш. Яе мех. ўласцівасці павышаюць легіраваннем (малібдэн, вальфрам, ванадый, ніобій і інш.), загатоўкай з наступным старэннем. Выкарыстоўваецца на выраб дэталей паравых установак высокага ціску, клапанаў авіярухавікоў, турбінных і кампрэсарных дыскаў і інш. Гарачатрывалыя сплавы ствараюцца на нікелевай, кобальтавай, жалезахроманікелевай аснове. Патрэбную іх структуру (з раўнамерным размеркаваннем часціц інтэрметалічных злучэнняў, барыдаў) атрымліваюць гомагенізавальным гартаваннем і старэннем, легіраваннем тугаплаўкімі хім. элементамі і элементамі-ўмацавальнікамі (тытан, алюміній, ніобій, бор), а таксама памяншэннем колькасці свінцу, волава, сурмы, вісмуту, серы. Вырабы, прызначаныя для працяглай эксплуатацыі пры т-ры больш за 800 °C, дадаткова апрацоўваюць алітаваннем, эмаліраваннем, на іх наносяць тугаплаўкія вокіслы і інш. Гарачатрывалыя сплавы ідуць на выраб дэталей паравых і газавых турбін, газатурбінных рухавікоў, энергет. машын і інш. Гарачатрывалы чыгун — аўстэнітны, з шарападобнай формай графіту, легіраваны нікелем, хромам і марганцам. З яго атрымліваюць вырабы, якія эксплуатуюцца пры павышаных т-рах (да 600 °C) і нагрузках у агрэсіўных асяроддзях: галоўкі поршняў, выхлапныя калектары рухавікоў унутр. згарання, карпусы турбанагравальнікаў і інш. Да гарачатрывалых матэрыялаў адносяцца таксама тугаплаўкія металы, металакераміка, некаторыя кампазіцыйныя матэрыялы.

На Беларусі гарачатрывалыя матэрыялы даследуюцца ў Фіз-тэхн. ін-це АН Беларусі. Створаны эканомналегіраваныя гарачаўстойлівыя маркі сталі (выкарыстоўваюцца для вырабу тэрмічных печаў, шклаформаў і інш.), накіравана закрышталізаваныя эўтэктычныя сплавы (больш гарачаўстойлівыя, чым вядомыя прамысловыя), даследаваны высокалегіраваныя сплавы на жалезнай, алюмініевай і нікелевай асновах.

Г.Г.Паніч.

т. 5, с. 51

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАГРА́ФІЯ РАСЛІ́Н,

фітагеаграфія, раздзел батанічнай і фіз. геаграфіі (біягеаграфіі), які вывучае размеркаванне ў сучасным і мінулым асобных відаў раслін і іх сістэматычных груп па паверхні Зямлі і заканамернасці іх пашырэння. Цесна звязана з геабатанікай, палеабатанікай, геалогіяй і інш. Даследуе сучасныя арэалы відаў, родаў, сямействаў раслін (фітахаралогія) і іх гістарычна складзеныя комплексы — геагр. элементы флоры (фларыстычная геаграфія раслін), высвятляе залежнасць пашырэння раслін ад умоў навакольнага асяроддзя (экалагічная геаграфія раслін), гісторыю развіцця флоры зямнога шара і асобных фларыстычных комплексаў, рассяленне і ўзнікненне відаў і інш. таксонаў раслін (флорагенетыка). Практычнае значэнне геаграфіі раслін звязана з пошукам магчымасцей расшырэння асартыменту неабходных для чалавека раслін, з рашэннем пытанняў іх інтрадукцыі і акліматызацыі.

Развіццё геаграфіі раслін як навукі пачалося з даследаванняў ням. вучонага А.Гумбальта і швейц. батаніка К.Дэкандоля. Вял. значэнне для развіцця гіст. эвалюцыйнага прынцыпу ў геаграфіі раслін мелі вучэнне Ч.Дарвіна, работы рус. Вучоных М.Бякетава, А.М.Краснова, М.І.Кузняцова, У.Л.Камарова і інш., а таксама вучэнне В.В.Дакучаева пра зоны прыроды.

На тэр. Беларусі даследаванні па геаграфіі раслін вядуцца з канца 18 — пач. 19 ст. (В.Бесэр, Э.Ліндэман, Р.Пабо, К.Чалоўскі, Р.Траўтфетэр і інш.). Шырокую вядомасць мелі фларыстычныя і фітагеагр. працы І.К.Пачоскага і В.С.Палянскай. Н.-д. работа вядзецца ў НДІ АН Беларусі (Ін-т эксперым. батанікі, Ін-т геал. навук), Цэнтр. бат. садзе, БДУ і інш. Вывучаюцца гіст. і фітагеагр. Сувязі флоры Беларусі з флорамі інш. рэгіёнаў, праводзіцца аналіз уздзеяння чалавека і тэхнагенных фактараў на працэсы флорагенезу, распрацоўваюцца тэарэт. пытанні фітахаралогіі (Н.В.Казлоўская, В.І.Парфёнаў, І.Д.Юркевіч, В.С.Гельтман, Г.У.Вынаеў і інш.).

Літ.:

Козловская Н.В. Флора Белоруссии, закономерности ее формирования, научные основы использования и охраны. Мн., 1978;

Парфенов В.И, Ким Г.А., Рыковский Г.Ф. Антропогенныя изменения флоры и растительности Белоруссии. Мн., 1985.

Г.У.Вынаеў.

т. 5, с. 115

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ЗАКО́Н,

унутраная істотная і ўстойлівая сувязь з’яў, якая абумоўлівае іх развіццё і ўпарадкаванае змяненне. Паняцце З. блізкае да паняцця заканамернасці як сукупнасці ўзаемазвязаных па змесце законаў, якія забяспечваюць устойлівую тэндэнцыю або накіраванасць ў змяненні сістэмы. З. выяўляе і адзін з бакоў сутнасці (гл. Сутнасць і з’ява). У сістэме аб’ектыўнага ідэалізму ён трактуецца як выяўленне сусв. розуму, увасобленага ў прыродзе і грамадстве. З пункту погляду суб’ектыўнага ідэалізму З. прыўносіцца ў рэальны свет суб’ектам, які яго пазнае: розум дае законы прыродзе. Дыялект. матэрыялізм зыходзіць з таго, што З. мае аб’ектыўны характар, выражае рэальныя адносіны рэчаў і адлюстроўвае іх у свядомасці. На ранніх ступенях развіцця навукі ўстанаўліваліся эмпірычныя, або фенаменалагічныя З., якія выяўлялі сувязь паміж уласцівасцямі рэчаў і з’яў, што назіраліся пачуццёва (напр., Бойля—Марыёта закон). Тэарэт. З. раскрываюць глыбокія ўнутр. сувязі працэсаў, механізмы іх выкарыстання, уводзяць аб’екты (малекулы і атамы), што назіраюцца тэарэтычна. З пункту погляду дакладнасці прадказанняў адрозніваюць статыстычныя і дынамічныя законы. У залежнасці ад ступені агульнасці і сферы дзеяння адрозніваюць прыватныя, або спецыфічныя З., якія выражаюць сувязь паміж канкрэтнымі фіз., хім. або біял. ўласцівасцямі (напр., З. узаемасувязі масы і энергіі), і ўсеагульныя, або універсальныя З., якія выражаюць узаемасувязь паміж універсальнымі ўласцівасцямі і атрыбутамі матэрыі (напр., З. захавання і ператварэння энергіі, З. сусв. прыцягнення, З. дыялектыкі). Паміж агульнымі і прыватнымі законамі існуе дыялект. ўзаемасувязь: агульныя З. дзейнічаюць праз прыватныя, а апошнія уяўляюць сабой праяўленне агульных. Чалавек як звяно натуральнага працэсу сам падпарадкоўваецца З. гэтага працэсу. Але дзякуючы свайму веданню прыроды ён можа ўнутры вядомых межаў выкарыстоўваць у сваіх інтарэсах яе ўласныя заканамернасці. З. дапамагаюць людзям тлумачыць з’явы працэсы рэчаіснасці, прымаць рашэнні і ажыццяўляць практычныя пераўтварэнні ў розных сферах дзейнасці.

С.Ф.Дубянецкі.

т. 6, с. 506

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

адбіва́ць

1. (адкалоць) bschlagen* vt, bbrechen* vt;

2. (удар) bwehren vt, pareren vt, bweisen* vt; zurückschlagen* vt (мяч);

адбіва́ць ата́ку den ngriff bschlagen* [zurückschlagen*, bwehren, bweisen*];

3. разм. (адабраць сілай) entrißen* vt, wgnehmen* vt, bnehmen* vt;

4. фіз. wderspiegeln vt; reflekteren vt (святло, цяпло, промні, гук);

5. разм. (адхіліць каго-н., ад чаго-н.) bspenstig mchen, wgschnappen vt (D);

адбіва́ць у каго-н. пакупніко́ў j-m die Käufer wglocken;

адбіва́ць жаніха́ den Bräutigam bspenstig mchen;

адбіва́ць ахво́ту die Lust nehmen* [vertriben*]

Беларуска-нямецкі слоўнік (М. Кур'янка, 2010, актуальны правапіс) 

сярэ́дні

1. Mttel-, mttler;

жанчы́на сярэ́дняга ро́сту ine mttelgroße Frau;

2. (узяты ў сярэднім) Mttel-, Drchschnitts-, drchschnittlich;

сярэ́дняя велічыня́ [лі́чба] матэм., эк. Mttelwert m -es, -e, Drchschnittsgröße f -, -n; Drchschnittszahl f -, -en;

сярэ́дняя гадзі́нная ху́ткасць фіз. Stundngeschwindigkeit f -;

сярэ́днія да́ныя Mttelwerte pl, Drchschnittswerte pl, Drchschnitte pl;

сярэ́дні ўзрост Drchschnittsalter n -s;

3. разм. (пасрэдны) mttelmäßig; mäßig;

сярэ́дні па́лец Mttelfnger m -s, -;

сярэ́дняе ву́ха анат. Mttelohr n -(e)s;

сярэ́дняя шко́ла Mttelschule f -, -n; berschule f;

сярэ́дняя адука́цыя пед. Mttelschulbildung f -;

сярэ́днія вякі́ гіст. Mttelalter n -s

Беларуска-нямецкі слоўнік (М. Кур'янка, 2010, актуальны правапіс) 

ГАЛЬФСТРЫ́М (Gulf Stream),

сістэма цёплых цячэнняў у паўн. ч. Атлантычнага ак. Цягнецца на 10 тыс. км ад п-ва Фларыда да Вял. Ньюфаўндлендскай банкі (уласна Гальфстрым) і далей да а-воў Шпіцберген і Новая Зямля (Паўночна-Атлантычнае цячэнне). Фарміруецца ў паўн. ч. Фларыдскага праліва як сцёкавае цячэнне Мексіканскага зал., рухаецца на Пн уздоўж узбярэжжа Паўн. Амерыкі, жывіцца водамі Паўн. Пасатнага і Гвіянскага цячэнняў. На Пд (у Фларыдскім прал.) Гальфстрым мае шыр. 75 км, таўшчыню патоку 700—800 м, скорасць да 10 км/гадз, т-ра вады на паверхні ад 24 да 28 °C, расход вады каля 25 млн. м³/с (у 20 разоў перавышае расход усіх рэк зямнога шара). У акіяне Гальфстрым злучаецца з Антыльскім цячэннем і на 38° паўн. ш. яго расход дасягае 82 млн. м³/с. Каля Вял. Ньюфаўндлендскай банкі шыр. 200 км, т-ра вады на паверхні ад 10 да 20 °C; скорасць да 4 км/гадз, каля берагоў Еўропы — 0,4—0,7 км/гадз. Сярэднегадавая салёнасць 36—36,4‰, макс. — 36,5‰ на глыб. 200 м. Да паўд. ускраіны Вял. Ньюфаўндлендскай банкі да Гальфстрыма падыходзіць з Пн халоднае Лабрадорскае цячэнне, на мяжы з якім адбываецца перамешванне і апусканне паверхневых вод. У сістэму Гальфстрыма ўваходзяць адгалінаванні Паўн.-Атлантычнага цячэння — Нарвежскае цячэнне, Ірмінгера цячэнне і Нардкапскае цячэнне. Гальфстрым аказвае значны ацяпляльны ўплыў на клімат, гідралагічныя і біял. ўмовы паўн. ч. Атлантычнага ак. і Паўн.-Ледавіты ак., а таксама на клімат Еўропы. Гальфстрым выяўлены ў 1513 ісп. экспедыцыяй пад камандаваннем Х.Понсе дэ Леона. У 1770-я г. Бенджамін Франклін нанёс напрамкі руху цячэння на геагр. карты. З 1966 Акіянаграфічнае ўпраўленне ВМС ЗША выдае штомесячную зводку па Гальфстрыму, у якой апісваецца яго стан у Паўн. Атлантыцы і фіз. якасці.

Літ.:

Толмазгин Д.М. Океан в движении. Л., 1976;

Дрейк Ч. и др. Океан сам по себе и для нас: Пер. с англ. М., 1982.

К.К.Кудло.

т. 4, с. 478

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАГРА́ФІЯ МЕДЫЦЫ́НСКАЯ,

галіна навукі, што вывучае сувязі (залежнасці) паміж прыроднымі, сац.-эканам. і інш. ўмовамі пэўных тэрыторый і станам здароўя насельніцтва, а таксама рэгіянальныя асаблівасці ўзнікнення і пашырэння хвароб, арганізацыю мед. дапамогі.

У даследаваннях па геаграфіі медыцынскай улічваюцца кліматычныя ўмовы, ландшафтныя асаблівасці, наяўнасць або адсутнасць у геагр. асяроддзі (у т. л. ў прадуктах харчавання) некат. хім. элементаў, умовы жыцця, культ. ўзровень насельніцтва, традыцыі харчавання, ступень антрапагеннага ператварэння, забруджанасці навакольнага асяроддзя і інш. фактары. Геаграфія медыцынская падзяляецца на мед. кліматалогію, мед. ландшафтазнаўства, нозагеаграфію, мед. картаграфію, краявую эпідэміялогію і інш. раздзелы. Навук. распрацоўкі па геаграфіі медыцынскай вядомы з 18 ст. У Англіі яны звязаны з імёнамі С.Хенена, Х.Маршала, у Францыі — Ш.Будэна, у Расіі — А.Гуна, А.П.Уладзімірскага, Я.А.Чыстовіча.

На Беларусі медыка-геагр. даследаванне пачата ў 2-й пал. 18 ст. А.Меерам (клімат, сан. стан і пашырэнне хвароб у Крычаўскім старостве), І.І.Ляпёхіным (медыка-геагр. апісанні наваколляў Гомеля, Оршы, Магілёва), Ж.Э.Жыліберам (геаграфія лек. раслін бел. губерняў). Да 19 ст. адносяцца медыка-геагр., медыка-стат. і медыка-тапаграфічныя апісанні шэрагу губерняў, паветаў і гарадоў Беларусі (Л.І.Галынец, А.А.Бекарэвіч, В.В.Кошалеў і інш.). У пач. 20 ст. Мінскім т-вам урачоў складзены апісанні Мінска, Слуцка, Ігумена, пав. бальніц, даследавалася залежнасць фіз. развіцця насельніцтва ад сац.-быт. і прыродных умоў. У сав. час да 1940-х г. праведзена вывучэнне геагр. пашырэння на Беларусі, эндэмічных валлякоў, склеромы, малярыі, тыфаў, шаленства. У 1950—70-я г. даследаваліся пытанні методыкі і гісторыі геаграфіі медыцынскай (С.І.Бялоў, Дз.П.Бяляцкі, А.В.Якаўлеў і інш.), апублікавана манаграфія Бялова і М.С.Ратабыльскага «Медыцынская геаграфія Беларусі» (1977). Пасля аварыі на Чарнобыльскай АЭС на Беларусі арганізаваны і вядуцца комплексныя даследаванні геаграфіі пашырэння радыенуклідаў, іх уплыў на стан здароўя розных узроставых груп насельніцтва. Звесткі геаграфіі медыцынскай выкарыстоўваюць пры планаванні мерапрыемстваў па аздараўленні мясцовасцей, прафілактыцы хвароб і арганізацыі сістэмы мед. дапамогі насельніцтву.

Э.А.Вальчук.

т. 5, с. 114

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)