трэцяя ад Сонца планета Сонечнай сістэмы. Астранамічны знак ♁ або . Абарачаецца вакол Сонца па эліптычнай арбіце, блізкай да кругавой (з эксцэнтрысітэтам 0,017) з сярэдняй скорасцю каля 30 км/с. Сярэдняя адлегласць ад Сонца 149,6 млн.км (1 астр. адзінка), перыяд абарачэння 365,24 сярэдніх сонечных cутак (трапічны год). На сярэдняй адлегласці 384,4 тыс.км ад З. вакол яе абарачаецца прыродны спадарожнік Месяц, а з канца 1950-х г. запушчана шмат штучных спадарожнікаў. З. абарачаецца вакол сваёй восі, якая мае нахіл да плоскасці экліптыкі, роўны 66°33′22″, за 23 гадз 56 мін (зорныя суткі). Перыяд абарачэння адносна Сонца (сонечныя суткі) 24 гадз. З абарачэннем вакол Сонца і нахілам зямной восі звязана змена на З. пораў года, а з вярчэннем яе вакол восі — змена дня і ночы. Мае форму, блізкую да трохвосевага эліпсоіднага сфероіда (геоіда), сярэдні радыус якога 6371 км, экватарыяльны — 6378,2 км, палярны — 6356,8 км; даўж. акружнасці экватара 40 075,7 км. Пл. паверхні З. 510,2 млн.км2 (у т.л. суша 149,1 млн.км2, або 29,2%, мораў і акіянаў 361,1 млн.км2, або 70,8%), аб’ём 1083·1012км3, маса 5976·1021кг, сярэдняя шчыльн. 5518 кг/м³. Беларусь займае 0,139% тэр. сушы (207,6 тыс.км2). Мае гравітацыйнае, магн. і эл. палі. У саставе З. пераважаюць жалеза (34,6%), кісларод (29,5%), крэмній (15,2%) і магній (12,7%). Паводле сучасных касмаганічных уяўленняў, З. ўтварылася каля 4,7 млрд. гадоў назад з рассеянага ў пратасонечнай сістэме газа-пылавога рэчыва. Геал. яе гісторыя падзяляецца на 2 няроўныя этапы: дакембрый (каля 3 млрд. гадоў) і фанеразой (каля 570 млн. гадоў). У выніку дыферэнцыяцыі рэчыва З. пад уздзеяннем яе гравітацыйнага поля, ва ўмовах разагравання нетраў узніклі і развіліся розныя паводле хім. саставу, агрэгатнага стану і фіз. асаблівасцей абалонкі — геасферы З. У цэнтры яе знаходзіцца ядро Зямлі з радыусам 3,5 тыс.км. Т-ра яго прыкладна 5000—6000 °C, ціск дасягае 3,6·1011 Па, шчыльн. каля 12500 кг/м³ Большую ч. аб’ёму (83%) і масы (67%) «цвёрдай» З. складае мантыя Зямлі. Над мантыяй знаходзіцца зямная кара. Паводле складу і інш. асаблівасцей адрозніваюць мацерыковую кару (магутнасцю ад 35—45 км пад раўнінамі да 75 км у горных абласцях) і акіянічную (магутнасцю 5—10 км). У зямной кары вылучаюць рухомыя вобласці — геасінкліналі і адносна спакойныя — платформы. Верхняя ч. мантыі і зямная кара ўтвараюць літасферу — цвёрдую верхнюю абалонку З. таўшчынёй ад 50 да 200 км. Асабліва важную ролю ва ўтварэнні асадкавага покрыва З. адыгрывае кара выветрывання — слой таўшчынёй звычайна да некалькіх дзесяткаў метраў, размешчаны ў зоне кантакту літасферы з паверхняй З., дзе актыўна працякаюць працэсы фіз., хім. і біял. выветрывання. Большую ч. паверхні З. пакрываюць воды акіянаў і мораў. У акіянах і морах больш за 96% вады гідрасферы, астатняя яе частка размеркавана паміж паверхневымі і падземнымі водамі сушы, ільдамі (пераважна ў высокіх шыротах) і снягамі; нязначная колькасць вільгаці знаходзіцца ў паветры і жывых арганізмах. Агульная колькасць вады на З. ацэньваецца ў 1,4—1,5 млрд.км3. Сусв. акіян падзяляецца на Ціхі, Атлантычны, Індыйскі і Паўночны Ледавіты акіяны; у Паўд. паўшар’і зрэдку вылучаюць Паўд. акіян. Сярэдняя глыб. акіянаў 3711 м, найбольшая — 11 022 м (у Марыянскім глыбакаводным жолабе Ціхага ак.). У Паўн. паўшар’і вада пакрывае 61%, у Паўд. — 81% паверхні. Працэсы перамешвання і марскія цячэнні звязваюць воды акіянаў у адзінае цэлае, таму іх салёнасць мяняецца мала — сярэдняя 35 г/л. Вял. роля акіянаў у кругавароце рэчываў на З. і ў фарміраванні клімату яе асобных раёнаў.
Над акіянамі ўзвышаюцца асобныя масівы сушы, якія ўздымаюцца ў сярэднім на выш. 875 м над узр. м. і ўтвараюць 6 мацерыкоў (Еўразія, Афрыка, Паўночная Амерыка, Паўднёвая Амерыка, Антарктыда і Аўстралія), а таксама шматлікія астравы. Большая ч. сушы знаходзіцца ў Паўн. паўшар’і, а пры падзеле на Зах. і Усх. паўшар’і — ва Усходнім. У рэльефе пераважаюць раўніны і нізкагор’і выш. да 1000 м, якія складаюць каля 2/з паверхні. Сярэднія і высокія горы займаюць каля 1/3 паверхні сушы (самая высокая адзнака — 8848 м, г. Джамалунгма ў Гімалаях). Асобныя невял. ўнутр. раёны сушы ляжаць ніжэй узр. м. (самая нізкая яе адзнака -400 м у Зах. Азіі, на ўзбярэжжы Мёртвага м.). Рэльеф сушы і марскога дна ў асобных рэгіёнах надзвычай разнастайны, што абумоўлена складанымі ўзаемасувязямі эндагенных (пераважна тэктанічных) і экзагенных (эразійных, эолавых, карставых і інш.) рэльефаўтваральных працэсаў. З. акружае паветр.атмасфера, якая складаецца ў асноўным з сумесі азоту (78,08%) і кіслароду (20,95%); у нязначнай колькасці ёсць інертныя газы, вадзяная пара і інш. Агульная маса паветра 5,151015т, з вышынёй яго ціск і шчыльнасць памяншаюцца. Атмасфера мае слаістую будову (вылучаюць трапасферу, стратасферу, мезасферу, іонасферу, тэрмасферу, экзасферу, якія паслядоўна зменьваюцца ад паверхні З. і адрозніваюцца адна ад адной тэмпературай, шэрагам фіз. і хім. уласцівасцей). Атмасфера затрымлівае значную частку сонечнай энергіі і амаль непразрыстая для цеплавога выпрамянення З.; у выніку наяўнасці ў ёй вуглякіслага газу і вадзяной пары стварае парніковы эфект. Яна таксама ахоўвае паверхню З. ад разбуральнага ўздзеяння большасці метэарытаў. На выш. 20—25 км знаходзіцца азонавы слой (азонасфера), які затрымлівае б.ч. вельмі шкоднага для жывых істот караткахвалевага касм. выпрамянення. Паміж атмасферай і зямной паверхняй адбываецца абмен цяплом і вільгаццю, што выклікае пастаянны кругаварот вады з утварэннем воблакаў (пакрываюць пастаянна не менш 1/2 паверхні З.) і выпадзеннем ападкаў. Паветра знаходзіцца ў бесперапынным руху; яго цыркуляцыя, абумоўленая пераважна нераўнамерным награваннем паверхні З. ў розных шыротах, моцна ўплывае на надвор’е і клімат розных абласцей. Рэзкая верхняя мяжа атмасферы адсутнічае, шчыльнасць яе газаў на адлегласці некалькіх тысяч кіламетраў ад паверхні паступова набліжаецца да шчыльнасці міжпланетнай прасторы. Самая вонкавая і працяглая абалонка — магнітасфера Зямлі, фіз. ўласцівасці якой вызначаюцца магнітным полем З.; у ёй на выш. 3—4 тыс.км і 22 тыс.км над экватарам знаходзяцца ўнутр. і вонкавы радыяцыйныя паясы З. Асн. крыніцай энергіі, што паступае на паверхню З., з’яўляецца электрамагн. выпрамяненне Сонца, якое праходзіць праз атмасферу. Агульная колькасць сонечнай энергіі і цяпла ў выніку рознага нахілу зямной паверхні да сонечных промняў заканамерна памяншаецца ад тропікаў да полюсаў, што з’яўляецца гал. прычынай кліматычнай і геагр. занальнасці. На зямным шары вылучаюць экватарыяльны, па 2 (у Паўн. і Паўд. паўшар’ях) субэкватарыяльныя, трапічныя, субтрапічныя, умераныя паясы, а таксама субарктычны і арктычны (у высокіх шыротах Паўн. паўшар’я), субантарктычны і антарктычны (у высокіх шыротах Паўд. паўшар’я), якія адрозніваюцца паміж сабой тэмпературнымі ўмовамі і інш. асаблівасцямі клімату і ландшафтаў. Сярэдняя т-ра прыземнага слоя паветра на планеце 14 °C, у пустынях Паўн. Афрыкі і Каліфорніі адзначаліся максімальныя т-ры 57—58 °C, самыя нізкія т-ры на паверхні З. назіраліся над ледавікамі цэнтр. раёнаў Антарктыды (каля -90 °C). Сярэднегадавая колькасць ападкаў на зямным шары каля 1000 мм, найб. іх выпадае ў гарах Усх. Індыі і Гавайскіх а-воў (да 12 000 мм за год), найменш — у некат. субтрапічных і трапічных пустынях (некалькі міліметраў, месцамі — не кожны год), а таксама ў ледзяных пустынях высокіх шырот Арктыкі і Антарктыкі (амаль выключна ў цвёрдым выглядзе). Колькасць ападкаў і іх сезонная зменлівасць у розных рэгіёнах З. вызначаюцца ў асноўным умовамі цыркуляцыі атмасферы і мясц. араграфічнымі асаблівасцямі. Клімат З. значна мяняўся ў розныя геал. эпохі. Найважнейшая асаблівасць З., што адрознівае яе ад інш. планет Сонечнай сістэмы, — існаванне жыцця, якое ўзнікла каля 3—3,5 млрд. гадоў назад (ёй садзейнічала наяўнасць на З. фіз. і хім. умоў, неабходных для сінтэзу складаных арган. малекул).
Вобласць актыўнага жыцця ўтварае асобную абалонку З. — біясферу, склад, будова і энергет. працэсы ў якой ў значных рысах абумоўлены дзейнасцю жывых арганізмаў, што ўтвараюць у сукупнасці жывое рэчыва; у біясферы адбываецца біял. кругаварот рэчыва на З. Працяглая гісторыя развіцця біясферы і значныя прасторавыя адрозненні прыродных умоў садзейнічалі вял. разнастайнасці жыццёвых форм. На З. існуе каля 2 млн. відаў жывёл і раслін (па колькасці відаў пераважаюць жывёлы, па аб’ёме біямасы — расліны). Найб. колькасць жывёл і раслін жыве ў цёплых і вільготных раёнах сушы — у вільготных тропіках, найменшая — у сухіх і гарачых трапічных пустынях і ў ледзяных пустынях Арктыкі і Антарктыкі. Біямаса сушы (6,5·1012т) у сотні разоў перавышае біямасу акіянаў. Найб. дыферэнцыраваныя склад і будову ў межах З. мае геаграфічная абалонка, што аб’ядноўвае цесна ўзаемадзейныя ніжнія слаі атмасферы, верхнія тоўшчы літасферы, амаль усю гідрасферу і ўсю біясферу, паміж якімі адбываецца бесперапынны абмен рэчывам і энергіяй. Яе магутнасць не перавышае некалькіх дзесяткаў кіламетраў, але ў яе межах назіраецца вял. дыферэнцыяцыя прыродных ландшафтаў, што асабліва ўзмацняецца ў гарах, дзе на фоне шыротнай занальнасці адзначаюцца праяўленні вышыннай пояснасці. Каля 30% паверхні сушы ўкрываюць лясы, каля 20% — саванны і рэдкалессі, каля 20% — пустыні і паўпустыні, больш як 10% — ледавікі, каля 10% — астатнія матуральныя ландшафты, больш за 10% пад ворнымі землямі і урбанізаванымі тэрыторыямі. Са з’яўленнем чалавека (не менш як 3 млн. гадоў назад) жыццё на З. дасягнула разумнай формы. У ходзе грамадскага развіцця геагр. абалонка дае чалавеку прыродныя рэсурсы і ўмовы існавання, зазнае ўсё большае антрапагеннае ўздзеянне на ўсе кампаненты і на ландшафты ў цэлым; гэтым яна адрозніваецца ад інш. абалонак З. Працэсы ўзаемадзеяння чалавека і навакольнага асяроддзя, іх экалагічныя, сац., эканам., паліт. вынікі набываюць планетарны характар. Ад вырашэння праблем, якія ўзніклі ў ходзе гэтага ўзаемадзеяння, залежыць будучае З. і чалавецтва. З. вывучаюць геадэзія (даследуе фігуру і памеры З.), астраномія (рух З. як нябеснага цела), геафізіка (стан рэчыва З. і фіз. працэсы ва ўсіх геасферах), геахімія (размеркаванне хім. элементаў З. і працэсы іх міграцыі), геалогія (гісторыю развіцця З., склад, будову зямной кары і больш глыбокіх сфер), фізічная геаграфія і біялогія (прыродныя працэсы і з’явы, што адбываюцца ў геагр. абалонцы і біясферы). З. з’яўляецца канчатковым аб’ектам даследавання ўсіх навук, якія вывучаюць законы ўзаемадзеяння прыроды і грамадства. На З. знаходзіцца 191 дзяржава і шэраг несамастойных тэрыторый (1997).
Літ.:
Мильков Ф.Н. Общее землеведение. М., 1990.
В.П.Якушка.
Да арт.Зямля. Выгляд Зямлі з космасу. Бачны Афрыка, частка Антарктыды, Аравійскі паўвостраў.Да арт.Зямля. Касмічны здымак паўднёва-заходняй часткі Гімалаяў.Да арт.Зямля. Частка рэльефнай карты дна Ціхага акіяна.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АСТРАНАМІ́ЧНЫЯ ІНСТРУМЕ́НТЫ І ПРЫЛА́ДЫ,
оптыка-механічная і электронная апаратура для астранамічных назіранняў і апрацоўкі іх даных. Дапамагаюць вызначаць становішча касм. целаў на нябеснай сферы, іх памеры, скорасць, напрамак руху ў прасторы, хім. састаў і фіз. стан. Складаюць асн. тэхнічную базу астранамічных абсерваторый, выкарыстоўваюцца ў навуч. і пазнавальных мэтах. Падзяляюцца на назіральныя прылады (тэлескопы), святлопрыёмную і аналізоўную апаратуру, прылады для рэгістрацыі часу, спектраў і гэтак далей Каб пазбегнуць шкодных і скажальных уздзеянняў атмасферы Зямлі, астр. інструменты падымаюць на розныя вышыні з дапамогай аэрастатаў, самалётаў, геафіз. ракет, штучных спадарожнікаў Зямлі і аўтам. міжпланетных станцый.
Найбольш стараж.астр. інструменты — вугламерныя, складаюцца з адліковага круга (або яго часткі) і візірнага прыстасавання без аптычнай сістэмы (гноман, армілярная сфера і інш.). Для большай дакладнасці вымярэнняў павялічваліся памеры адліковых кругоў, напрыклад, у пач. 15 ст. Улугбек пабудаваў пад Самаркандам секстант з радыусам круга 40 м. З 17 ст. ў вугламерных інструментах пры візіраванні карыстаюцца зрокавымі трубамі, вуглы павароту якіх вызначаюцца па дакладна падзеленых кругах (універсальны інструмент, вертыкальны круг, мерыдыянальны круг і інш.). Пачатак тэлескапічнай астраноміі звязаны з імем Г.Галілея, які з дапамогай падзорнай трубы зрабіў важныя астр. адкрыцці і растлумачыў іх. Выпрамяненне касм. целаў у радыёдыяпазоне даследуецца радыётэлескопамі. Захаванне дакладнага часу і выдача неабходных сігналаў часу ажыццяўляюцца з дапамогай астр. гадзіннікаў, хранометраў і хранографаў. Для апрацоўкі вынікаў назірання выкарыстоўваюцца ЭВМ. Да дэманстрацыйных прылад адносяць тэлурыі (мадэлі Сонечнай сістэмы) і планетарыі, якія даюць магчымасць на ўнутр. паверхні сферычнага купала наглядна дэманстраваць астр. з’явы.
Літ.:
Курс астрофизики и звездной астрономии. Т. 1. М., 1973;
Мартынов Д.Я. Курс практической астрофизики. М., 1967.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ГА́ЗАВАЯ ДЫНА́МІКА,
раздзел гідрааэрамеханікі, які вывучае рух газападобных і вадкіх асяроддзяў з улікам сціскальнасці і іх узаемадзеянне з цвёрдымі целамі. Сучасная газавая дынаміка вывучае таксама цячэнне газаў пры высокіх т-рах, што суправаджаецца хім. (дысацыяцыя, гарэнне і інш.) і фіз. (іанізацыя, выпрамяненне і інш.) працэсамі. Да газавай дынаміцы адносяцца таксама радыяцыйная газавая дынаміка, дынаміка плазмы, дынаміка выбуху і дэтанацыі, дынамічная метэаралогія і інш. Газавая дынаміка цесна звязана з тэрмадынамікай.
Газавая дынаміка займаецца вывучэннем сіл, якія дзейнічаюць на самалёт, снарад, ракету, на лапаткі турбін, вызначэннем найбольш прыдатных (абцякальных) формаў гэтых цел, разлікам соплаў, дыфузараў, эжэктараў, эксперым. даследаваннямі ў аэрадынамічных трубах, мадэляваннем на ЭВМ і інш.Тэарэт. разлікі пераносяцца на натуру метадамі падобнасці тэорыі. Найб. важная характарыстыка газавых патокаў — лік Маха: М = ν/a (ν — скорасць газу, а — скорасць гуку ў газе). Пры скарасцях газаў, меншых за скорасць гуку ў газе (М<1), сціскальнасць газу надае патоку толькі якасныя змены, а пры скарасцях газу, большых за скорасць гуку ў газе (М>1), рух цела суправаджаецца ўзнікненнем ударнай хвалі і рэзкім ростам супраціўлення руху. Вялікі ўклад у развіццё газавай дынамікі зрабілі вучоныя: расійскі С.А.Чаплыгін, савецкія С.А.Хрысціяновіч, А.А.Дарадніцын, Л.І.Сядоў, ням. Л.Прандтль, Т.Маер, англ. Дж.І.Тэйлар і інш.
На Беларусі даследаванні па газавай дынаміцы пачаліся ў 1960-я г. ў АН Беларусі і БДУ. Вынікі даследаванняў па газавай дынаміцы выкарыстоўваюцца ў фізіцы плазмы, балістыцы, ракета- і турбамашынабудаванні і інш.
Літ.:
Абрамович Г.Н. Прикладная газовая динамика. Ч. 1—2. 5 изд. М., 1991;
Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. 2 изд. М., 1966.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
АЗЁРАЗНА́ЎСТВА, лімналогія,
галіна гідралогіі; навука пра кантынентальныя вадаёмы запаволенага водаабмену (азёры, вадасховішчы, сажалкі). Вывучае комплекс узаемазвязаных фіз., хім. і біял. працэсаў у вадаёмах; даследуе азёрныя катлавіны, донныя адклады, водны баланс і рэжым узроўню, тэрміку, лядовыя і аптычныя з’явы, гідрахімію, рух азёрнай вады, берагі, рыбапрадукцыйнасць і інш. Выкарыстоўвае метады геахіміі, геафізікі, геалогіі, гідрабіялогіі, вынікі лабараторных аналізаў станцый і пастоў сістэмы Гідраметслужбы, аэрафотаздымку.
Заснавальнік навуковага азёразнаўства — швейц. вучоны Ф.А.Фарэль (1885; працы па тэорыі і методыцы азёразнаўства). У развіцці азёразнаўства вял. значэнне маюць працы рус. вучоных Дз.М.Анучына (вывад аб сувязі азёраў з усімі кампанентамі ландшафтаў), Л.С.Берга (апісанні азёраў Зах. Сібіры, Аральскага, Ісык-Куля) і А.І.Ваейкава (выявіў сувязь вагання ўзроўню вял. азёраў з іх водным балансам і інш.). На Беларусі першыя гідралагічныя даследаванні азёраў праведзены А.М.Семянтоўскім (у 1872 апублікаваў гідралагічны агляд Віцебскай губ.).
Сістэматычнае вывучэнне азёраў пачалося з арганізацыі н.-д. станцыі рыбнай гаспадаркі (1928). Комплексныя даследаванні азёраў праводзяцца на біял. і геагр. ф-тах БДУ (складанні азёрнага кадастру, прыродна-гасп. класіфікацыі, стварэнне ахоўных тэрыторый на базе азёраў), выконваюцца маніторынгавыя даследаванні па міжнар. праграме «Чалавек і біясфера». Н.-д. лабараторыя азёразнаўства БДУ (з 1968) комплексна даследавала больш як 500 азёраў і 20 вадасховішчаў (вывучаны гісторыя развіцця ў галацэне, вызначана іх генетычная прыналежнасць, законы азёрнай седыментацыі; В.П.Якушка). У ін-тах геал. навук і праблем выкарыстання прыродных рэсурсаў і экалогіі АН Беларусі вывучаюцца азёры як аб’екты намнажэння сапрапеляў. У вытв. мэтах азёры і вадасховішчы даследуюцца ў Цэнтр.НДІ комплекснага выкарыстання водных рэсурсаў. Вынікі даследаванняў улічваюцца ў рыбнай гаспадарцы, энергетыцы, курортнай справе, водазабеспячэнні, меліярацыі, здабычы карысных выкапняў і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
БІЯЛАГІ́ЧНЫЯ РЫ́ТМЫ,
біярытмы, цыклічныя ваганні інтэнсіўнасці і характару біял. працэсаў і з’яў, уласцівыя амаль усім жывым арганізмам (ад аднаклетачных да чалавека), ізаляваным органам і тканкам, асобным клеткам. Біялагічныя рытмы накіраваны на падтрымку гамеастазу і адаптацыі, адлюстроўваюць цячэнне часу ў біялагічных сістэмах. Класіфікацыя біялагічных рытмаў заснавана на паняцці цыкла (паслядоўнасці станаў са зваротам да зыходнага) і часу паміж станамі сістэмы, якія паўтараюцца (даўжыні перыяду); яна ўключае дыяпазон перыядаў ад мілісекунды да некалькіх гадоў. Адрозніваюць 5 класаў біялагічных рытмаў: рытмы высокай частаты, ад доляў секунды да 30 мін (асцыляцыі на малекулярным узроўні, рытмы скарачэння сэрца, дыханне, перыстальтыка кішэчніка); рытмы сярэдняй частаты, ад 30 мін да 28 гадз, у т. л. ультрадыянныя (да 20 гадз) і цыркадыянныя, ці калясутачныя (20—28 гадз), якія звязаны з вярчэннем Зямлі вакол восі; мезарытмы: інфрадыянныя (28 гадз — 6 дзён) і цыркасептальныя (каля 7 дзён); макрарытмы з перыядам ад 20 дзён да аднаго года; мегарытмы з перыядам у гады і дзесяткі гадоў. Біялагічныя рытмы класіфікуюць таксама па ўзроўнях арганізацыі біясістэмы: клетачныя, органавыя, арганізмавыя, папуляцыйныя. Біялагічныя рытмы раслін праяўляюцца ў сутачным руху лісця, пялёсткаў, сезонным адраўненні парасткаў, якія зімуюць. Біялагічныя рытмы жывёл выяўляюцца ў перыядычнасці рухальнай актыўнасці, тэмпературы, сакрэцыі гармонаў, праліферацыі клетак, сінтэзе РНК, утварэнні рыбасом і інш. Вызначаны рытмы адчувальнасці клетак, тканак, органаў і арганізма да дзеяння фактараў хім. і фіз. прыроды. З парушэннем часавай арганізацыі фізіял. функцый звязаны шматлікія паталагічныя працэсы. Біялагічныя рытмы вывучае біярытмалогія.
Літ.:
Биологические ритмы: Пер. с англ. Т. 1—2. М., 1984;
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МА́КСВЕЛА ЎРАЎНЕ́ННІ,
асноўныя ўраўненні класічнай макраскапічнай электрадынамікі, што апісваюць эл.-магн. з’явы ў адвольных асяроддзях і вакууме. Выведзены ў канцы 1860-х г. Дж.К.Максвелам на падставе абагульнення эмпірычных законаў эл. і магн. з’яў.
М.ў. звязваюць напружанасць эл. поля , магн. індукцыю , эл. індукцыі і напружанасць магн. поля з характарыстыкамі крыніц эл. і магн. палёў: шчыльнасцю эл. зарадаў і шчыльнасцю току праводнасці . У дыферэнцыяльнай форме маюць выгляд:
(1),
(2),
(3),
(4), дзе
— шчыльнасць току зрушэння. М.ў. дапаўняюцца матэрыяльнымі ўраўненнямі:
,
,
, дзе ε0(μ0) — эл. (магн.) пастаянная, ε(μ) — адносная дыэлектрычная (магн.) пранікальнасць і γ — эл. праводнасць асяроддзя. М.ў. (1) выяўляе непарыўную сувязь паміж эл. і магн. палямі і выражае закон электрамагнітнай індукцыі, (2) паказвае, што крыніцай магн. поля з’яўляюцца токі праводнасці і токі зрушэння (гл.Поўнага току закон), (3) устанаўлівае, што крыніцай эл. поля з’яўляюцца эл. зарады (гл.Гаўса тэарэма), (4) паказвае на адсутнасць адасобленых крыніцы магн. поля (магн. зарадаў). М.ў. дазваляюць вызначыць асн. характарыстыкі эл.-магн. поля , , , у кожным пункце прасторы і ў кожны момант часу, калі вядомыя Q, i, як функцыі каардынат і часу. З М.ў. вынікае магчымасць існавання электрамагнітных хваль, якія распаўсюджваюцца ў вакууме са скорасцю святла. М.ў. адлюстроўваюць глыбокую сувязь эл. і магн. з’яў і з’яўляюцца тэарэтычнай асновай класічнай і квантавай электрадынамікі, фіз. оптыкі, тэорыі распаўсюджання эл.-магн. хваль і інш. раздзелаў электрамагнетызму.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МЕТР (франц. métre ад грэч. metron мера),
1) адзінка даўжыні, адна з 7 асн. адзінак Міжнароднай сістэмы адзінак (СІ). Абазначаецца м. 1 м = 100 см = 1000 мм. У СІ М. з’яўляецца таксама адзінкай даўжыні хвалі, фокуснай адлегласці і інш. велічынь, што маюць фіз. сэнс даўжыні.
2) Мера даўжыні, што ўзнаўляе адзінку даўжыні — М. Паводле вызначэння, прынятага 17-й Ген. канферэнцыяй па мерах і вазе (1983), М. — даўжыня шляху, які праходзіць святло ў вакууме за 1/299792458 долю секунды.
Першапачаткова (1791, Францыя) М. вызначаны як 1/10 000 000 частка 1/4 даўжыні зямнога мерыдыяна. Для дакладнага вызначэння М. ў 1792—99 праведзены геад. вымярэнні дугі Парыжскага мерыдыяна. Першы эталон М. зроблены ў 1792 у выглядзе плацінавай лінейкі, адлегласць паміж канцамі якой раўнялася 1 м. Ён перададзены на захоўванне ў Нац. архіў Францыі і атрымаў назву «архіўны М.». З 1889 міжнар. прататыпам М. служыў плаціна-ірыдыевы брус з нанесенымі на адной з яго плоскасцей штрыхамі, які захоўваецца ў Міжнар. бюро мер і вагі ў г. Сеўр каля Парыжа. У 1960—83 М. вызначылі як даўжыню, роўную 1 650 763,73 даўжыні хвалі ў вакууме эл.-магн. выпрамянення, якое адпавядае пераходу паміж узроўнямі 2.р10 i 5d5 атама крыптону-86. Натуральныя першасныя эталоны М., прынятыя ў 1960 і 1983, даюць магчымасць узнаўляць меры даўжыні з хібнасцю да ±10−8м. М. пакладзены ў аснову метрычнай сістэмы мер. У практыцы вымярэнняў шырока выкарыстоўваюцца кратныя і дольныя адзінкі: кіламетр, дэцыметр, сантыметр, міліметр, мікраметр, нанаметр і інш.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
МІЖМАЛЕКУЛЯ́РНАЕ ЎЗАЕМАДЗЕ́ЯННЕ,
узаемадзеянне паміж малекуламі з насычанымі хім. сувязямі. Існаванне М.ў. ўпершыню ўлічыў Я.Д.Ван дэр Ваальс пры тлумачэнні ўласцівасцей рэальных газаў і вадкасцей (гл.Ван-дэр-Ваальса ўраўненне). Асобны выпадак М.ў. — вадародная сувязь.
Характар М.ў. залежыць ад адлегласці паміж малекуламі (r). Пры вялікіх r (r≫l, дзе l — лінейныя памеры малекул, што ўзаемадзейнічаюць) электронныя абалонкі малекул не перакрываюцца, паміж малекуламі пераважаюць сілы прыцягнення (далёкадзейныя сілы), якія маюць эл. прыроду. Далёкадзейныя сілы падзяляюць на арыентацыйныя (сілы ўзаемадзеяння паміж палярнымі малекуламі), індукцыйныя (паміж палярнымі і непалярнымі малекуламі), дысперсійныя (паміж любымі малекуламі). Пры малых r (r∼l), калі электронныя абалонкі малекул перакрываюцца, пераважаюць сілы адштурхоўвання, якія з’яўляюцца кароткадзейнымі сіламі. Энергія адштурхоўвання залежыць ад r так, як у выпадку абменнага ўзаемадзеяння, што прыводзіць да ўтварэння хім. сувязі. М.ў. звычайна апісваецца патэнцыяльнай энергіяй узаемадзеяння U(r) (патэнцыялам М.ў.), а сіла ўзаемадзеяння ƒ — функцыяй ƒ = −dU(r)/dr. Тэарэт. вызначэнне залежнасці U(r) ці эксперым. вымярэнне /практычна немагчымыя з-за вельмі вял. колькасці малекул, што ўзаемадзейнічаюць, і малых значэнняў r. Звычайна залежнасць U(r) падбіраюць эмпірычна так, каб праведзеныя з яе дапамогай разлікі розных характарыстык рэчыва адпавядалі эксперым. даным. М. ў. вывучаюць рознымі фіз. метадамі, асн. з іх: метад малекулярных пучкоў і дыфракцыйныя метады. Пры даследаванні М.ў. усё часцей выкарыстоўваюць разліковыя метады квантавай хіміі.
Літ.:
Межмолекулярные взаимодействия: От двухатомных молекул до биополимеров: Пер. с англ.М., 1981.
Крывая залежнасці патэнцыяльнай энергіі U(r) міжмалекулярнага ўзаемадзеяння ад адлегласці r паміж малекуламі; r = σ — найменшая магчымая адлегласць паміж нерухомымі малекуламі; ε — глыбіня патэнцыяльнай ямы (вызначае энергію сувязі малекул).
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ЛА́ЗЕР (англ. laser, скарачэнне ад Light Amplification by Stimulated Emission of Radiation узмацненне святла вымушаным выпрамяненнем),
аптычны квантавы генератарэл.-магн. выпрамянення ў бачным, інфрачырвоным ці ультрафіялетавым дыяпазонах даўжынь хваль. Прынцып работы Л. заснаваны на ўзмацненні святла пры наяўнасці адваротнай сувязі. Выкарыстоўваецца ў навук.фіз., хім., біял. даследаваннях, прам-сці, медыцыне, экалогіі, лініях валаконна-аптычнай сувязі, для запісу, апрацоўкі, перадачы і захоўвання інфармацыі і інш., а таксама ў ваен. справе (прамянёвая зброя).
Л. мае актыўнае асяроддзе, прылады напампоўкі для ўзбуджэння рэчыва ва ўзмацняльны стан і адваротнай сувязі, якая забяспечвае шматразовае праходжанне выпрамянення праз актыўнае рэчыва. Адваротная сувязь ствараецца люстэркамі (гл.Аптычны рэзанатар) або перыядычнымі неаднастайнасцямі актыўнага рэчыва (Л. з размеркаванай адваротнай сувяззю). Паводле актыўнага рэчыва адрозніваюць газавы лазер, паўправадніковы лазер, цвердацелы лазер, вадкасны на арган. фарбавальніках, эксімерны Л. (на малекулах галагенаў з высакароднымі газамі), Л. на свабодных электронах і інш.; паводле рэжыму работы — неперарыўны і імпульсны (выпрамяняюцца адзінкавыя імпульсы ці перыядычная паслядоўнасць імпульсаў з частатой паўтарэння да 107 с−1.
На Беларусі даследаванні і распрацоўкі Л. праводзяцца ў ін-тах фізікі, электронікі, малекулярнай і атамнай фізікі Нац.АН, БДУ, БПА і інш.Бел. вучонымі і інжынерамі створаны лазеры на арган. фарбавальніках, рэалізаваны розныя метады кіравання параметрамі лазернага выпрамянення і выкарыстання Л. ў навук. даследаваннях, медыцыне, апрацоўцы інфармацыі.
Літ.:
Степанов Б.И. Лазеры на красителях. М., 1979;
Яго ж. Лазеры сегодня и завтра. Мн., 1987;
Качмарек Ф. Введение в физику лазеров: Пер. с пол. М., 1981;
Тарасов Л.В. Лазеры действительности и надежды. М., 1985;
Войтович А.П., Севериков В.Н. Лазеры с анизотропными резонаторами. Мн., 1988.
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)
ДАПАЎНЯ́ЛЬНАСЦІ ПРЫ́НЦЫП,
метадалагічны прынцып, прапанаваны Н.Борам (1927) у сувязі з неабходнасцю стварэння лагічна несупярэчлівай фіз. інтэрпрэтацыі квантавай механікі; метадалагічнае абагульненне неазначальнасцей суадносін.
Мікраскапічныя аб’екты (электроны, фатоны і інш.) у розных эксперым. умовах могуць паводзіць сябе як строга лакалізаваныя часціцы ці як хвалі. Аднак уяўленне пра суіснаваине карпускулярных і хвалевых уласцівасцей у адным і тым жа аб’екце звязана з неабходнасцю аб’яднання несумяшчальных паняццяў (напр., паняцце даўжыні хвалі ў пэўным пункце прасторы не мае сэнсу). У адпаведнасці з Д.п. пры тэарэт. апісанні мікраскапічных з’яў неабходна ўжываць 2 сістэмы макраскапічных паняццяў, бо выкарыстанне адной з іх выключае магчымасць адначасовага выкарыстання другой; абедзве ж яны аднолькава неабходныя для поўнага апісання квантава-мех. сістэм і з’яўляюцца нібыта ўзаемна дапаўняльнымі бакамі такога апісання. Бор прадэманстраваў таксама справядлівасць Д.п. ў дачыненні да апісання біял., псіхал. і сац. з’яў. З дапамогай Д.п. ўстанаўліваецца эквівалентнасць (раўназначнасць) паміж двума класамі паняццяў, што апісваюць супярэчлівыя сітуацыі ў розных сферах пазнання. У вузкім сэнсе Д.п. супадае з прынцыпам ням. фізіка В.Гайзенберга, які адзначаў, што пры пэўнасці каардынаты мікрачасціцы мае месца нявызначанасць імпульсу і наадварот. Часам Д.п. ацэньваецца як метадалогія, толькі знешне падобная на дыялектычную, або наогул як метафізічны падыход (мех. злучэнне процілегласцей). Фізікі капенгагенскай школы (П.Іордан, Дж.Франк) лічылі Д.п. чыста суб’ектыўным, цалкам абумоўленым слабасцямі пазнання, звязанымі з адсутнасцю спец. сродкаў адлюстравання цэласнасцей, вымушанасцю пазнання па частках.
Літ.:
Крымский С.Б., Кузнецов В.И. Мировоззренческие категории в современном естествознании. Киев, 1983;
Дополнительность и методология научного познания // Нильс Бор и наука XX в.: Сб. науч. тр. Киев, 1988;
Мировоззренческие структуры в научном познании. Мн., 1993.