ГЕРЦ (Hertz) Генрых Рудольф

(22.2.1857, г. Гамбург, Германія — 1.1.1894),

нямецкі фізік, адзін з заснавальнікаў электрадынамікі. Скончыў Берлінскі ун-т (1880) і быў асістэнтам у Г.Гельмгольца. З 1885 праф. Вышэйшай тэхн. школы ў Карлсруэ, з 1889 Бонскага і Берлінскага ун-таў. Навук. працы па механіцы і электрадынаміцы. Прапанаваў поўную тэорыю ўдару пругкіх шароў (1882), даў строга навук. азначэнне паняцця цвёрдасці цел. Сканструяваў эл.-магн. генератар (вібратар Герца) і рэзанатар, з дапамогай якіх эксперыментальна даказаў існаванне эл.-магн. хваль (1886—89). Эксперыментальна пацвердзіў тоеснасць уласцівасцей эл.-магн. і светлавых хваль, адкрыў знешні фотаэфект (1887). Яго імем названа адзінка частатыгерц.

Літ.:

Григорьян А.Т., Вяльцев А.Н. Генрих Герц. М., 1968;

Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX в.). М., 1989. С. 524—537.

т. 5, с. 200

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГЕАТЭХНАЛО́ГІЯ

(ад геа... + тэхналогія),

хімічныя, фіз.-хім., біяхім. і мікрабіял. метады здабычы карысных выкапняў на месцы іх залягання. Звязаны з выкарыстаннем буравых свідравін. Ажыццяўляюцца пад зямлёй без прысутнасці людзей.

Метадамі геатэхналогіі ператвараюць вугаль у гаручыя газы няпоўным спальваннем яго пад зямлёй (гл. Падземная газіфікацыя вугалю); здабываюць цвёрдыя карысныя выкапні іх гідрамех. разбурэннем і перамяшчэннем на паверхню здробненых часціц разам з вадой, што запампоўваецца ў радовішча; атрымліваюць серу расплаўленнем яе гарачай вадой або газіфікацыяй токамі высокай частаты; ажыццяўляюць тэрмічную здабычу нафты (нафтаносныя пласты награюць эл. токам, парай, гарачай вадой або спальваннем часткі нафты); здабываюць кухонную соль (па адной трубе ў свідравіну запампоўваюць ваду, па другой адпампоўваюць расол). Асобны від геатэхналогіі — бактэрыяльнае вышчалочванне, пры якім з дапамогай мікраарганізмаў вылучаюць з шматкампанентных злучэнняў пэўныя хім. элементы (пераважна медзі, урану). Метады геатэхналогіі выкарыстоўваюцца на радовішчах з невялікай колькасцю карысных выкапняў і рассеянымі элементамі.

т. 5, с. 124

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЯЛІ́КІХ ЛІ́КАЎ ЗАКО́Н,

агульны прынцып, паводле якога сукупнае дзеянне вял. ліку выпадковых фактараў пры некаторых вельмі агульных умовах прыводзіць да выніку, які амаль не залежыць ад выпадку.

На пач. 18 ст. Я.Бернулі ўпершыню дакладна даказаў тэарэму пра імкненне частаты выпадковай падзеі да яе імавернасці пры вял. колькасці выпрабаванняў. Гэтая тэарэма дае тэарэт. аснову для набліжанага вылічэння невядомай імавернасці падзеі па яе частаце. С.Пуасон у 1837 пашырыў тэарэму Бернулі на больш агульныя ўмовы і ўвёў тэрмін «Вялікіх лікаў закон». Значнае абагульненне тэарэмы Бернулі зрабіў П.Л.Чабышоў (1866), вынікам чаго з’яўляецца правіла сярэдняга арыфметычнага, якое выкарыстоўваецца ў практыцы вымярэнняў: калі x1, x2, x3, ..., xn — значэнні велічыні, што вымяраецца, то яе сапраўднае значэнне супадае з сярэднім значэннем a = <x> 1 n k = 1 n xk

Вялікіх лікаў законам карыстаюцца ў тэхніцы, фізіцы, статыстыцы, эканоміцы і інш. галінах навукі і тэхнікі.

А.А.Гусак.

т. 4, с. 387

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АНТЫФЕРАМАГНЕТЫ́ЗМ

(ад анты... + ферамагнетызм),

магнітаўпарадкаваны стан рэчыва, якому ў адсутнасць знешняга магн. поля адпавядае антыпаралельная арыентацыя магн. момантаў суседніх атамаў (іонаў) і нулявая намагнічанасць рэчыва ў цэлым. Выяўлены ў канцы 1920-х г., тэарэтычна абгрунтаваны Л.Неелем (1932, Францыя) і Л.Д.Ландау (1933).

Антыферамагн. структура — сістэма ўстаўленых адна ў адну магн. падрашотак, у вузлах якіх знаходзяцца іоны аднаго віду з аднолькавымі па значэнні і напрамку магнітнымі момантамі. У знешнім магн. полі антыферамагнетыкі слаба намагнічваюцца. Пры т-рах вышэй за Нееля пункт (TN) антыферамагн. парадак разбураецца за кошт цеплавога руху атамаў (іонаў) і антыферамагнетык пераходзіць у парамагн. стан (фазавы пераход 2-га роду), таму пры T=TN тэмпературныя залежнасці магн. успрымальнасці, цеплаёмістасці і інш. маюць анамаліі. На частотах, блізкіх да ўласнай частаты прэцэсіі магн. момантаў падрашотак, назіраецца антыферамагнітны рэзананс.

Літ.:

Преображенский А.А., Бишард Е.Г. Магнитные материалы и элементы. 3 изд. М., 1986.

Р.М.Шахлевіч.

т. 1, с. 402

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

АСАЦЫЯТЫ́ЎНЫ СЛО́ЎНІК,

лінгвістычны даведнік, у якім фіксуюцца семантычныя сувязі паміж словамі (з указаннем іх частаты), выяўленыя ў выніку прамога псіхалінгвістычнага апытання носьбітаў мовы (інфармантаў).

Інфармантам даецца слова-стымул і прапануецца адказаць на яго першым словам-рэакцыяй (свабодны асацыятыўны эксперымент) альбо сінанімічнымі, антанімічнымі, тэматычна звязанымі і інш. словамі-рэакцыямі (накіраваны асацыятыўны эксперымент). Вынікі такіх эксперыментаў афармляюцца ў выглядзе розных тыпаў асацыятыўных слоўнікаў. Прамы асацыятыўны слоўнік складаецца з рэестравых слоў-стымулаў і ўсіх выяўленых на іх слоў-рэакцый ці толькі тых, што сустрэліся ў адказах 10 і больш інфармантаў, т.зв. ўстойлівыя асацыяцыі. Адваротны асацыятыўны слоўнік складаецца з рэестравых слоў-рэакцый і ўсіх слоў-стымулаў, што выклікалі іх, ці толькі тых, якія з’яўляюцца ўстойлівай асацыяцыяй. Слоўнік асацыятыўных нормаў сумяшчае рысы прамога і адваротнага асацыятыўных слоўнікаў. Асацыятыўны тэзаўрус на падставе выяўленых сувязяў паміж словамі пэўнай мовы групуе іх у семантычныя палі, вызначае ўзаемаадносіны паміж імі і гэтак далей

На Беларусі выдадзены толькі прамы «Асацыятыўны слоўнік беларускай мовы» А.І.Цітовай (1981).

В.К.Шчэрбін.

т. 2, с. 22

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫСОКАЧАСТО́ТНАЯ ЗВА́РКА,

зварка з награваннем металаў або пластмас токамі высокай частаты. Адрозніваюць высокачастотную зварку металаў ціскам і плаўленнем, бесперапынна паслядоўную (зварным швом) і адначасовую, з індукцыйным або кантактным (найб. пашырана) падводам току.

Пры зварцы швом створанае токам высокачастотнае магнітнае поле пранікае ў прамежак паміж краямі вырабаў, якія аплаўляюцца і сціскаюцца. Скорасць зваркі да 1 м/с і болей, рабочыя частоты 0,01, 0,44 і 1,76 МГц. Гэтым спосабам зварваюць сплавы жалеза, алюмінію, медзі і інш. (пры вытв-сці труб, кабеляў, бэлек, злучэнні лістоў, стужак і г.д.). Індукцыйная высокачастотная зварка заключаецца ў глыбінным індукцыйным нагрэве тарцоў вырабаў і іх сцісканні. Выкарыстоўваецца для злучэння малавугляродзістых і нізкалегіраваных сталей (пры стыкоўцы труб, дзе захоўваецца ўнутр. сячэнне). Пры высокачастотнай зварцы плаўленнем тарцы загатовак сумесна аплаўляюць спец. індуктарам. Такім спосабам робяць карпусы метал. вырабаў, злучаюць трубы з лістамі. Пры высокачастотнай зварцы пластмас іх награюць у пераменным эл. полі рабочага кандэнсатара (гл. Дыэлектрычны нагрэў), які служыць і зварачным прэсам. Так атрымліваюць вырабы з ліставых і плёначных тэрмапластыкаў.

т. 4, с. 323

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЕ́НТЫЛЬ

(ад ням. Ventil клапан),

1) вентыль трубаправодны — запорнае прыстасаванне для ўключэння і выключэння ўчастка трубаправода, рэгулявання патокаў вадкасці, газу ці пары. Вялікія вентылі злучаюцца з трубамі, помпамі і інш. спец. фланцамі, малыя — з дапамогай разьбы.

2) вентыль электрычны — эл. прылада, праводнасць якой у адным напрамку на адзін або некалькі парадкаў вышэй, чым у процілеглым. Выкарыстоўваецца ў выпрамніках, інвертарах, пераўтваральніках частаты, камутацыйных прыстасаваннях і інш. Бываюць электралітычныя, газаразрадныя (у т. л. ртутныя), электравакуумныя, паўправадніковыя. У якасці вентыляў выкарыстоўваюцца дыёды, тыратроны, тырыстары. Магутнасць эл. вентыляў ад долей вата да дзесяткаў кілават.

3) вентыль у вылічальнай тэхніцы — электроннае прыстасаванне на паўправадніковых прыладах (дыёдах, транзістарах) або ў выглядзе інтэгральнай схемы з некалькімі (часцей двума) уваходамі і адным выхадам. У гэтым вентылі сігнал на выхадзе ўтвараецца толькі тады, калі ёсць сігнал на ўсіх уваходах. Выкарыстоўваецца для кіравання перадачай сігналаў і ажыццяўлення лагічных аперацый.

4) Прыстасаванне ў камеры пнеўматычнай шыны, якое дапамагае напампоўваць паветра ў камеру і перашкаджае яго выхаду.

5) Механізм, які зменьвае (звычайна павялічвае) даўжыню канала духавых інструментаў (валторнаў, труб і інш.).

т. 4, с. 89

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ВЫПРАМЯНЕ́ННЕ электрамагнітнае, свабоднае электрамагнітнае поле, якое існуе незалежна ад крыніц, што яго ствараюць; працэс утварэння свабоднага электрамагнітнага поля. Выпрамяненню ўласцівы т.зв. карпускулярна-хвалевы дуалізм. Асн. хвалевыя характарыстыкі выпрамянення — частата ν (або даўжыня хвалі λ=c/ν), дзе c — скорасць святла ў вакууме), а таксама хвалевы вектар k = 1λ n , дзе n — адзінкавы вектар напрамку распаўсюджвання хвалі. Хвалевыя ўласцівасці выпрамянення праяўляюцца ў наяўнасці інтэрферэнцыі і дыфракцыі (гл. Дыфракцыя хваль, Інтэрферэнцыя хваль). Карпускулярныя ўласцівасці характарызуюцца тым, што кожнай асобнай хвалі з частатой ν і хвалевым вектарам k адпавядае часціца (квант або фатон) з энергіяй E= і імпульсам p = h k , дзе h — Планка пастаянная. Карпускулярныя ўласцівасці праяўляюцца ў квантавых з’явах, напр., фотаэфект, Комптана эфект і інш.

Праяўленне хвалевых ці карпускулярных (квантавых) уласцівасцей выпрамянення залежыць ад яго частаты, па значэннях якой выпрамяненне ўмоўна падзяляецца на дыяпазоны (гл. табл.). <TABLE> Для хваль вял. даўжыні (напр., ЗВЧ, радыёхвалі) энергія квантаў вельмі малая, таму карпускулярныя ўласцівасці выпрамянення практычна не праяўляюцца. З павелічэннем частаты расце энергія квантаў і з інфрачырвонага дыяпазону ўжо пачынаюць пераважаць карпускулярныя ўласцівасці.

Уласцівасці выпрамянення для малых частот апісваюцца класічнай электрадынамікай, для вялікіх — квантавай. Паводле класічных Максвела ўраўненняў выпрамяненне ў кожным пункце прасторы і ў кожны момант часу характарызуецца напружанасцямі электрычнага E і магнітнага H палёў і пераносіць энергію, аб’ёмная шчыльнасць якой ρ = 1 ( E2 + H2 ) . У квантавай тэорыі ўраўненні Максвела поўнасцю захоўваюцца, аднак велічыні E і H маюць іншы сэнс. У гэтым выпадку сувязь паміж хвалевымі і карпускулярнымі ўласцівасцямі выпрамянення мае статыстычны характар: шчыльнасць энергіі эл.-магн. хвалі вызначаецца лікам квантаў у адзінцы аб’ёму N = ρhν , для асобнага кванта імавернасць яго знаходжання ў пэўным аб’ёме прапарцыянальная шчыльнасці энергіі.

Выпрамяненне ўзнікае ў рэчыве пры нераўнамерным руху эл. зарадаў ці змене магн. момантаў, у выніку чаго рэчыва траціць энергію і адбываюцца працэсы выпрамянення. Да іх адносяцца выпрамяненне бачнага, ультрафіялетавага і інфрачырвонага святла атамамі і малекуламі, γ-выпрамяненне атамных ядраў, выпрамяненне радыёхваль антэнамі. Адваротныя працэсы выпрамянення — працэсы паглынання. Пры іх за кошт энергіі выпрамянення павялічваецца энергія рэчыва. Паводле законаў класічнай электрадынамікі сістэма рухомых зараджаных часціц неперарыўна траціць энергію ў выглядзе выпрамянення — адбываецца неперарыўны працэс утварэння эл.-магн. хваль. Аднак у квантавых сістэмах працэсы выпрамянення і паглынання дыскрэтныя і адбываюцца ў адпаведнасці з законамі квантавых пераходаў (гл. Вымушанае выпрамяненне, Спантаннае выпрамяненне).

М.А.Ельяшэвіч, Л.М.Тамільчык.

т. 4, с. 318

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

БО́РА ТЭО́РЫЯ,

першая тэорыя атама і яго спектраў. Прапанавана Н.Борам у 1913 як аб’яднанне ідэі М.Планка аб квантаванні энергіі і планетарнай мадэлі атама Э.Рэзерфарда. Грунтуецца на двух пастулатах. Атамы могуць доўга знаходзіцца, не выпраменьваючы святла, ва ўстойлівых (стацыянарных) станах, адпаведных пэўным дыскрэтным (перарыўным) значэнням энергіі E1, E2, E3... (1-ы пастулат Бора). Выпрамяненне ці паглынанне святла адбываецца пры скачкападобных пераходах з аднаго стану ў другі паводле формулы EiEk=, дзе hν — энергія святла частаты ν, што выпрамяняецца ці паглынаецца, h — Планка пастаянная (2-і пастулат Бора, ці ўмова частот).

Пастулаты Бора пацверджаны эксперыментальна і выконваюцца для ўсіх мікрасістэм (атамных ядраў, атамаў, малекул і інш.). Каб знайсці магчымыя значэнні энергіі і інш. характарыстыкі стацыянарных станаў атама, Бор разглядаў рух электронаў вакол ядра паводле законаў механікі Ньютана (класічнай механікі), пры дапаўняльных, т.зв. квантавых, умовах. Пры гэтым электрон у найпрасцейшым выпадку атама вадароду можа рухацца вакол ядра па кругавых ці эліптычных арбітах пэўных памераў, якія павялічваюцца з павелічэннем энергіі атама ў адпаведных стацыянарных станах. Канкрэтныя мадэльныя ўяўленні пра рух электрона ў атаме па строга вызначаных арбітах заменены ўяўленнямі квантавай механікі.

Літ.:

Ельяшевич М.А. Развитие Нильсом Бором квантовой теории атома и принципа соответствия // Успехи физ. наук. 1985. Т. 147, вып. 2.

М.А.Ельяшэвіч.

т. 3, с. 215

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)

ГАДЗІ́ННІК АСТРАНАМІ́ЧНЫ,

гадзіннік для вызначэння, адліку і захавання дакладнага часу, які неабходны пры астр. даследаваннях, у практычнай астраноміі, астраметрыі. У старажытнасці для астр. даследаванняў карысталіся пясочнымі, вадзянымі і сонечнымі гадзіннікамі. Іх хібнасць складала секунды і болей. Да сучасных гадзіннікаў астранамічных адносяць спец. маятнікавыя (з сутачным ходам гадзіннікаў да 5·10​-4 с), кварцавыя гадзіннікі (з сутачным ходам 5·10​-7 с), квантавыя гадзіннікі (атамныя гадзіннікі з сутачным ходам не больш за 10​-8 с).

Маятнікавыя гадзіннікі канструкцый англ. інж. У.Г.Шорта і сав. канструктара Ф.М.Федчанкі складаюцца з 2 маятнікаў — свабоднага і другаснага. Іх дакладнасць заснавана на ўласцівасці маятніка захоўваць пастаянным перыяд сваіх ваганняў, які залежыць ад даўжыні маятніка. Для выключэння ўплыву змены знешніх умоў (т-ры, атм. ціску) на перыяд ваганняў стрыжань робяць з матэрыялу з малым каэф. лінейнага расшырэння, а сам свабодны маятнік змяшчаюць у герметычным аб’ёме ў ізатэрмічным пакоі. Маятнік злучаны з другасным гадзіннікавым механізмам эл. ланцугом. Маятнікавыя гадзіннікі патрабуюць папраўкі пры дапамозе астр. назіранняў або радыёсігналаў дакладнага часу, што выконваюцца службай часу. Кварцавыя гадзіннікі заснаваны на п’езаэлектрычным эфекце; малекулярныя і атамныя — на выкарыстанні ўласнай частаты ваганняў малекул і атамаў некаторых рэчываў (аміяку, цэзію, вадароду), што дало магчымасць стварыць новую, незалежную ад астр. назіранняў сістэму лічэння часу.

Літ.:

Бакулин П.И., Блинов Н.С. Служба точного времени. 2 изд. М., 1977.

Н.А.Ушакова.

т. 4, с. 421

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)